Occurrence of Internal Parasites and Anthelmintic Resistance in Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Coproparasitological Examination
2.3. GIS Species Identification by PCR
2.4. Evaluation of AR Occurrence
2.5. Statistical Analyses
3. Results
3.1. Occurrence of Endoparasites and GIS Species
3.2. Outcomes of AR Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamid, L.; Alsayari, A.; Tak, H.; Mir, S.A.; Almoyad, M.A.A.; Wahab, S.; Bader, G.N. An Insight into the Global Problem of Gastrointestinal Helminth Infections amongst Livestock: Does Nanotechnology Provide an Alternative? Agriculture 2023, 13, 1359. [Google Scholar] [CrossRef]
- Ng’etich, A.I.; Amoah, I.D.; Bux, F.; Kumari, S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol. Res. 2023, 123, 62. [Google Scholar] [CrossRef]
- Fthenakis, G.C.; Papadopoulos, E. Impact of parasitism in goat production. Small Rumin. Res. 2018, 163, 21–23. [Google Scholar] [CrossRef]
- Mpofu, T.J.; Nephawe, K.A.; Mtileni, B. Prevalence and resistance to gastrointestinal parasites in goats: A review. Vet. World 2022, 15, 2442–2452. [Google Scholar] [CrossRef]
- Seyoum, Z.; Getnet, K.; Chanie, M.; Derso, S.; Fentahun, S. Morbidity Parameters Associated with Gastrointestinal Tract Nematodes in Sheep in Dabat District, Northwest Ethiopia. Biomed. Res. Int. 2018, 2018, 9247439. [Google Scholar]
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Bombik, E.; Seremak, B.; Udała, J.; Sadowska, N. A Comparison of the Prevalence of the Parasites of the Digestive Tract in Goats from Organic and Conventional Farms. Animals 2021, 11, 2581. [Google Scholar] [CrossRef]
- Lambertz, C.; Poulopoulou, I.; Wuthijaree, K.; Gauly, M. Endoparasitic infections and prevention measures in sheep and goats under mountain farming conditions in Northern Italy. Small Rumin. Res. 2018, 164, 94–101. [Google Scholar]
- Kyriánová, I.A.; Kopecký, O.; Šlosárková, S.; Vadlejch, J. Comparison of internal parasitic fauna in dairy goats at conventional and organic farms in the Czech Republic. Small Rumin. Res. 2019, 175, 126–132. [Google Scholar]
- Voigt, K.; Sieber, P.L.; Sauter-Louis, C.; Knubben-Schweizer, G.; Scheuerle, M. Prevalence of pasture-associated metazoal endoparasites in Bavarian dairy goat herds and farmers’ approaches to parasite control. Berl. Munch. Tierarztl. Wochenschr. 2016, 129, 323–332. [Google Scholar]
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Chapter Seven—Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. In Advances in Parasitology; Gasser, R.B., Samson-Himmelstjerna, G.V., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 93, pp. 239–351. [Google Scholar]
- Mickiewicz, M.; Czopowicz, M.; Kawecka-Grochocka, E.; Moroz, A.; Szaluś-Jordanow, O.; Várady, M.; Königová, A.; Spinu, M.; Górski, P.; Bagnicka, E.; et al. The first report of multidrug resistance in gastrointestinal nematodes in goat population in Poland. BMC Vet. Res. 2020, 16, 270. [Google Scholar]
- Ahuir-Baraja, A.E.; Cibot, F.; Llobat, L.; Garijo, M.M. Anthelmintic resistance: Is a solution possible? Exp. Parasitol. 2021, 230, 108169. [Google Scholar] [CrossRef] [PubMed]
- Kotze, A.C.; Gilleard, J.S.; Doyle, S.R.; Prichard, R.K. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist. 2020, 14, 264–273. [Google Scholar] [PubMed]
- Mickiewicz, M.; Czopowicz, M.; Moroz, A.; Potărniche, A.V.; Szaluś-Jordanow, O.; Spinu, M.; Górski, P.; Markowska-Daniel, I.; Várady, M.; Kaba, J. Prevalence of anthelmintic resistance of gastrointestinal nematodes in Polish goat herds assessed by the larval development test. BMC Vet. Res. 2021, 17, 19. [Google Scholar]
- Mickiewicz, M.; Czopowicz, M.; Moroz, A.; Szaluś-Jordanow, O.; Górski, P.; Várady, M.; Königová, A.; Spinu, M.; Lefkaditis, M.; Kaba, J. Development of resistance to eprinomectin in gastrointestinal nematodes in a goat herd with pre-existing resistance to benzimidazoles. Pol. J. Vet. Sci. 2019, 22, 753–760. [Google Scholar] [CrossRef]
- Vadlejch, J.; Kyriánová, I.A.; Várady, M.; Charlier, J. Resistance of strongylid nematodes to anthelmintic drugs and driving factors at Czech goat farms. BMC Vet. Res. 2021, 17, 106. [Google Scholar]
- Babják, M.; Königová, A.; Komáromyová, M.; Kuzmina, T.; Nosal, P.; Várady, M. Multidrug resistance in Haemonchus contortus in sheep—Can it be overcome? J. Vet. Res. 2023, 67, 575–581. [Google Scholar] [CrossRef]
- Babják, M.; Königová, A.; Várady, M. Multiple Anthelmintic Resistance at a Goat Farm in Slovakia. Helminthologia 2021, 58, 173–178. [Google Scholar]
- Bordes, L.; Dumont, N.; Lespine, A.; Souil, E.; Sutra, J.F.; Prévot, F.; Grisez, C.; Romanos, L.; Dailledouze, A.; Jacquiet, P. First report of multiple resistance to eprinomectin and benzimidazole in Haemonchus contortus on a dairy goat farm in France. Parasitol. Int. 2020, 76, 102063. [Google Scholar]
- Devos, J.; Bourgoin, G.; Thorey, P.; Marcotty, T.; Benabed, S.; Berlus, O.; Masson, L.; Pardo, E.; Hoste, H. A Survey of Anthelmintic Efficacy in Dairy Goat Farms in South-East FrANCE. Small Rumin. Res. 2024, 234, 107238. [Google Scholar] [CrossRef]
- Potârniche, A.V.; Mickiewicz, M.; Olah, D.; Cerbu, C.; Spînu, M.; Hari, A.; Györke, A.; Moroz, A.; Czopowicz, M.; Várady, M.; et al. First Report of Anthelmintic Resistance in Gastrointestinal Nematodes in Goats in Romania. Animals 2021, 11, 2761. [Google Scholar] [CrossRef]
- World Bank Group. Available online: https://climateknowledgeportal.worldbank.org/country/romania/climate-data-historical?utm_source=chatgpt.com (accessed on 31 January 2025).
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Denwood, M.J.; Nielsen, M.K.; Thamsborg, S.M.; Torgerson, P.R.; Gilleard, J.S.; Dobson, R.J.; Vercruysse, J.; Levecke, B. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Vet. Parasitol. 2023, 318, 109936. [Google Scholar] [CrossRef]
- USDA. Why and How To Do FAMACHA© Scoring. 2016. Available online: https://web.uri.edu/wp-content/uploads/sites/241/FAMACHA-Scoring_Final2.pdf (accessed on 22 June 2024).
- Cozma, V.; Gherman, C.; Mircean, V.; Magdas, C.; Mihalca, A. Ghid de Diagnostic Parazitologic Veterinar, 2nd ed.; Editura Risoprint: Cluj-Napoca, Romania, 2010; pp. 16–20. [Google Scholar]
- Reinecke, R. The Larval Anthelmintic Test in Ruminants; Technical Communication, Department of Agricultural Technical Services: Onderstepoort, South Africa, 1973. [Google Scholar]
- Euzéby, J. Diagnostic Expérimental des Helminthoses Animales (Animaux Domestiques-Animaux de Laboratoire-Primates): Travaux Pratiques D’helminthologie Vétérinaire; Informations Techniques des Services Vétérinaires: Paris, France, 1981. [Google Scholar]
- Bisset, S.; Knight, J.; Bouchet, C. A multiplex PCR-based method to identify strongylid parasite larvae recovered from ovine faecal cultures and/or pasture samples. Vet. Parasitol. 2014, 200, 117–127. [Google Scholar] [PubMed]
- Amarante, M.; Santos, M.; Bassetto, C.; Amarante, A. PCR primers for straightforward differentiation of Haemonchus contortus, Haemonchus placei and their hybrids. J. Helminthol. 2017, 91, 757–761. [Google Scholar]
- von Samson-Himmelstjerna, G.; Harder, A.; Schnieder, T. Quantitative analysis of ITS2 sequences in trichostrongyle parasites. Int. J. Parasitol. 2002, 32, 1529–1535. [Google Scholar] [PubMed]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [PubMed]
- Torgerson, P.R.; Paul, M.; Furrer, R. Evaluating faecal egg count reduction using a specifically designed package “eggCounts” in R and a user friendly web interface. Int. J. Parasitol. 2014, 44, 299–303. [Google Scholar]
- Wang, C.; Torgerson, P.R.; Kaplan, R.M.; George, M.M.; Furrer, R. Modelling anthelmintic resistance by extending eggCounts package to allow individual efficacy. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 386–393. [Google Scholar]
- Dean, A.G.; Sullivan, K.M.; Zubieta, J. Epi Info 2000: A Database, and Statistics Program for Public Health Professionals for Use on Windows 95, 98, and NT Computers; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2000. [Google Scholar]
- FOODIEVIZ. Goats in Europe Map. Available online: https://foodieviz.com/goats/europe.html#google_vignette (accessed on 22 June 2024).
- Maurizio, A.; Stancampiano, L.; Tessarin, C.; Pertile, A.; Pedrini, G.; Asti, C.; Terfa, W.; Frangipane di Regalbono, A.; Cassini, R. Survey on Endoparasites of Dairy Goats in North-Eastern Italy Using a Farm-Tailored Monitoring Approach. Vet. Sci. 2021, 8, 69. [Google Scholar] [CrossRef]
- Juszczak, M.; Sadowska, N.; Udała, J. Parasites of the digestive tract of sheep and goats from organic farms in Western Pomerania, Poland. Ann. Parasitol. 2019, 65, 245–250. [Google Scholar]
- Idris, A.; Moors, E.; Sohnrey, B.; Gauly, M. Gastrointestinal nematode infections in German sheep. Parasitol. Res. 2012, 110, 1453–1459. [Google Scholar] [PubMed]
- Babjak, M.; Königová, A.; Urda-Dolinská, M.; Várady, M. Gastrointestinal helminth infections of dairy goats in Slovakia. Helminthologia 2017, 54, 211–217. [Google Scholar]
- Soulsby, E.J.L. Helminths, Arthropods and Protozoa of Domesticated Animals; CABI: Long Beach, CA, USA, 1982. [Google Scholar]
- Urquhart, G.M.; Armour, J.; Duncan, J.L.; Dunn, A.M.; Jennings, F.W. Veterinary Parasitology; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Pereira, M.A.; Vila-Viçosa, M.J.; Coelho, C.; Santos, C.; Esteves, F.; Cruz, R.; Gomes, L.; Henriques, D.; Vala, H.; Nóbrega, C.; et al. Pulmonary and Gastrointestinal Parasitic Infections in Small Ruminant Autochthonous Breeds from Centre Region of Portugal-A Cross Sectional Study. Animals 2024, 14, 1241. [Google Scholar] [CrossRef]
- Palkumbura, P.G.A.S.; Mahakapuge, T.A.N.; Wijesundera, R.R.M.K.K.; Wijewardana, V.; Kangethe, R.T.; Rajapakse, R.P.V.J. Mucosal Immunity of Major Gastrointestinal Nematode Infections in Small Ruminants Can Be Harnessed to Develop New Prevention Strategies. Int. J. Mol. Sci. 2024, 25, 1409. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.M.; Garza, J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 73–87. [Google Scholar]
- Chartier, C.; Ravinet, N.; Hoste, H.; Jacquiet, P.P.; Merlin, A.; Chauvin, A. Résistance aux anthelminthiques et traitement raisonné contre les strongles gastro-intestinaux chez les bovins et les petits ruminants. Bull. Des GTV 2018, 17–30. [Google Scholar]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef]
- Abongwa, M.; Martin, R.J.; Robertson, A.P. A Brief Review on the Mode of Action of Antinematodal Drugs. Parasites Vectors 2017, 67, 137–152. [Google Scholar]
- Fissiha, W.; Kinde, M.Z. Anthelmintic Resistance and Its Mechanism: A Review. Infect. Drug Resist. 2021, 14, 5403–5410. [Google Scholar]
- de Lourdes Mottier, M.; Prichard, R.K. Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenetics Genom. 2008, 18, 129–140. [Google Scholar]
- Fleming, S.A.; Craig, T.; Kaplan, R.M.; Miller, J.E.; Navarre, C.; Rings, M. Anthelmintic resistance of gastrointestinal parasites in small ruminants. J. Vet. Intern. Med. 2006, 20, 435–444. [Google Scholar] [PubMed]
- Hong, C.; Hunt, K.R.; Coles, G.C. Occurrence of anthelmintic resistant nematodes on sheep farms in England and goat farms in England and Wales. Vet. Rec. 1996, 139, 83–86. [Google Scholar] [PubMed]
- Potârniche, A.V.; Cerbu, C.; Olah, D.; Trif, E.; D’Amico, G.; Györke, A.; Mickiewicz, M.; Nowek, Z.; Czopowicz, M.; Nadolu, D.; et al. An Insight into Practices Associated with the Control of Internal Parasites in the Dairy Goat Herds of Romania: A Questionnaire Survey. Animals 2024, 14, 2375. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.J.; Anderson, N.; Jarrett, R.G. Detecting benzimidazole resistance with faecal egg count reduction tests and in vitro assays. Aust. Vet. J. 1989, 66, 236–240. [Google Scholar]
Parasite Species | Primer | 5′-3′ Primer Sequence | Amplicon Size (pb) | Hibridization Temperature |
---|---|---|---|---|
Teladorsagia circumcincta [29] | TeciFd3 | AAACTACTACAGTGTGGCTAACATA | 295–297 | 53 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Trichostrongylus axei [29] | TraxFd2 | GATGTTAATGTTGAACGACATTAATATC | 186 | 52 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Trichostrongylus colubriformis [29] | ITS2GF | CACGAATTGCAGACGCTTAG | 232 | 54 °C |
TrcoRv1 | ACATCATACAGGAACATTAATGTCA | 52 °C | ||
Trichostrongylus vitrines [29] | TrviFd1 | ATGTGAACGTGTTGTCACTGTTTA | 150 | 53 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Ostertagia leptospicularis [29] | OsleFd2 | CATGCAACATAACGTTAACATAATG | 196 | 52 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Oesophagostomum venulosum [29] | ITS2GF | CACGAATTGCAGACGCTTAG | 323/327/329 | 54 °C |
OeveRv1 | CGACTACGGTTGTCTCATTTCA | 54 °C | ||
Cooperia curticei [29] | CocuFd3 | TAATGGCATTTGTCTACATTGGTTC | 252 | 53 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Chabertia ovina [29] | ChovFd2 | CAGCGACTAAGAATGCTTTGG | 115/117 | 54 °C |
ITS2GR | GCTAAATGATATGCTTAAGTTCAGC | 54 °C | ||
Haemonchus placei [30] | HpBotuF | CCAGACCCGAGACTCGCC | 459 | 58.5 °C |
HpBotuR | CTGAAGGTAATGTCAAAATTTCT | |||
Haemonchus contortus [31] | H ConF | CATATACATGCAACGTGATGTTATGAA | 260 | 62 °C |
H ConR | GCTCAGGTTGCATTATACAAATGATAAA | |||
Cooperia oncophora [29] | ITS2GF | CACGAATTGCAGACGCTTAG | 173 | 54 °C |
CoonRv1 | CTATAACGGGATTTGTCAAAACAGA | 53 °C | ||
Nematodirus fillicolis [29] | ITS2GF | CACGAATTGCAGACGCTTAG | 162 | 54 °C |
NefiRv1 | GGGATTGACTGTTACGATGTAA | 50 °C | ||
Nematodirus spathiger [29] | ITS2GF | CACGAATTGCAGACGCTTAG | 213 | 54 °C |
NespRv1 | CATTCAGGAGCTTTGACACTAAT |
Parasitic Infections | Day 0 | Day 14 | p-Value | ||
---|---|---|---|---|---|
% (n/N) | 95% CI | % (n/N) | 95% CI | ||
Eimeria spp. | 95.5 (64/67) | 87.6–98.5 | 96.2 (51/53) | 87.3–99.0 | 0.85 |
Moniezia spp. | 43.3 (29/67) | 32.1–55.2 | 13.2 (7/53) | 6.6–24.8 | 0.0004 |
Gastrointestinal strongyles | 91.0 (61/67) | 81.8–95.8 | 81.1 (43/53) | 68.6–89.4 | 0.11 |
Protostronylus rufescens/ Mullerius capillaris | 77.6 (52/67) | 66.3–85.9 | 30.2 (16/53) | 19.5–43.5 | <0.00001 |
Dyctiocaulus filaria | 56.7 (38/67) | 44.8–67.9 | 11.3 (6/53) | 5.3–22.6 | <0.00001 |
Total | 100 (67/67) | 94.6–100 | 100 (53/53) | 93.2–100 | 0.87 |
Category | Eimeria spp. % (n/N) | Moniezia spp. % (n/N) | GIS % (n/N) | P. rufescens/ M. capillaris % (n/N) | D. filaria % (n/N) | |
---|---|---|---|---|---|---|
Young | Day 0 | 92.9 (13/14) | 64.3 (9/14) a | 85.7 (12/14) a | 64.3 (9/14) a | 64.3 (9/14) a |
Day 14 | 100.0 (14/14) | 21.4 (3/14) | 78.6 (11/14) | 0.0 (0/14) | 0.0 (0/14) | |
Adults | Day 0 | 96.2 (51/53) a | 37.7 (20/53) a | 92.5 (49/53) a | 81.1 (43/53) a | 54.7 (29/53) a |
Day 14 | 94.9 (37/39) | 10.3 (4/39) | 82.1 (32/39) | 41.0 (16/39) | 15.4 (6/39) | |
p-value | Day 0 | 0.85 | 0.14 | 0.80 | 0.325 | 0.734 |
Day 14 | 0.83 | 0.19 | 0.77 | 0.02 | 0.43 | |
Autumn | Day 0 | 94.7 (36/38) a | 71.1 (27/38) b | 97.4 (37/38) a | 100.0 (38/38) b | 100.0 (38/38) b |
Day 14 | 96.9 (31/32) | 6.3 (2/32) | 78.1 (25/32) | 15.6 (5/32) | 18.8 (6/32) | |
Spring | Day 0 | 96.6 (28/29) a | 6.9 (2/29) a | 82.8 (24/29) a | 48.3 (14/29) a | 0.0 (0/29) a |
Day 14 | 95.2 (20/21) | 23.8 (5/21) | 90.5 (19/21) | 52.4 (11/21) | 0.0 (0/21) | |
p-value | Day 0 | 0.810 | <0.00001 | 0.100 | <0.00001 | <0.00001 |
Day 14 | 0.76 | 0.06 | 0.24 | 0.004 | 0.13 |
Eimeria spp. | GIS | |||
---|---|---|---|---|
Day 0 | Day 14 | Day 0 | Day 14 | |
Age category | ||||
Young | 1323 ± 717 | 938 ± 221 | 800 ± 303 | 382 ± 137 |
Adults | 695 ± 178 | 716 ± 85 | 539 ± 75 | 584 ± 101 |
p-value | 0.214 | 0.82 | 0.221 | 0.11 |
Season | ||||
Autumn | 1058 ± 345 | 597 ± 106 | 565 ± 106 | 325 ± 109 |
Spring | 520 ± 120 | 1046 ± 140 | 629 ± 141 | 613 ± 105 |
p-value | 0.190 | 0.001 | 0.714 | 0.04 |
Total | 823 ± 202 | 783 ± 89 | 590 ± 84 | 533 ± 83 |
Haemonchus placei | Haemonchus contortus | Teladorsagia circumcincta | Trichostrongylus colubriformis | Oesophagostomum venulosum | Cooperia oncophora | |
---|---|---|---|---|---|---|
H1 | ||||||
Day 0 | P | P | P | P | P | N |
Day 14 | N | P | N | N | N | N |
H2 | ||||||
Day 0 | P | N | P | P | P | N |
Day 14 | N | N | N | P | N | N |
H3 | ||||||
Day 0 | N | N | N | N | N | N |
H4 | ||||||
Day 0 | N | P | P | P | N | P |
H5 | ||||||
Day 0 | P | N | P | P | P | P |
Day 14 | N | N | N | P | N | N |
Total | ||||||
Day 0 | 3/5 | 2/5 | 4/5 | 4/5 | 3/5 | 2/5 |
Day 14 | 0/3 | 1/3 | 0/3 | 2/3 | 0/3 | 0/3 |
Herd | Drug | FAMACHA (Mean ± SEM) | EPG (Mean ± SEM) | FECR % (90% CI) | Classification | ||
---|---|---|---|---|---|---|---|
Day 0 | Day 14 | Day 0 | Day 14 | ||||
H1 (N = 15) | EPR | 3.2 ± 0.2 | 3.2 ± 0.2 | 2539 ± 595 | 1267 ± 195 | 38.42 (23.4–71.8) | Resistant |
H2 (N = 71) | EPR | 3.1 ± 0.0 | 3.1 ± 0.0 | 605 ± 118 | 355 ± 132 | 54.71 (−4.1–75.1) | Resistant |
H5 (N = 21) | ALB | 3.6 ± 0.2 | 3.6 ± 0.2 | 750 ± 192 | 486 ± 89 | 9.78 (−1.7–64.8) | Resistant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, G.; Potârniche, A.-V.; Tucă, B.-I.; Györke, A. Occurrence of Internal Parasites and Anthelmintic Resistance in Goats. Animals 2025, 15, 1024. https://doi.org/10.3390/ani15071024
D’Amico G, Potârniche A-V, Tucă B-I, Györke A. Occurrence of Internal Parasites and Anthelmintic Resistance in Goats. Animals. 2025; 15(7):1024. https://doi.org/10.3390/ani15071024
Chicago/Turabian StyleD’Amico, Gianluca, Adrian-Valentin Potârniche, Bianca-Irina Tucă, and Adriana Györke. 2025. "Occurrence of Internal Parasites and Anthelmintic Resistance in Goats" Animals 15, no. 7: 1024. https://doi.org/10.3390/ani15071024
APA StyleD’Amico, G., Potârniche, A.-V., Tucă, B.-I., & Györke, A. (2025). Occurrence of Internal Parasites and Anthelmintic Resistance in Goats. Animals, 15(7), 1024. https://doi.org/10.3390/ani15071024