Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser
Abstract
:1. Introduction
2. Angle Measurement Methods Based on the Discrete Modes of a Mode-Locked Femtosecond Laser in Frequency Domain
2.1. A Method Employing the Dispersive Characteristics of a Diffraction Grating
2.1.1. Principle of the Generation of an Angle Scale Comb from an Optical Frequency Comb
2.1.2. Light Intensity Detecting-Type Mode-Locked Femtosecond Laser Autocollimator
2.1.3. An Optical Frequency Domain Angle Measurement Method Associated with a Mode-Locked Femtosecond Laser Autocollimator
2.2. Methods Based on the Chromatic Aberrations of a Simple Lens
3. Methods Based on the Absolute Distance Measurement
4. Angle Detection Based on the High Pulse Energy of a Mode-Locked Femtosecond Laser
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISO. Geometrical Product Specifications (GPS)—Dimensional tolerancing—Part 2: Dimensions Other than Linear Sizes; ISO 14405-2:2011; ISO: Genava, Switzerland, 2012. [Google Scholar]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef] [Green Version]
- Wallis, D.A. History of Angle Measurement. In Proceedings of the FIG Working Week 2005 and the 8th International Conference for Global Spatial Data Infrastructure, Cairo, Egypt, 16–21 April 2005; pp. 1–17. [Google Scholar]
- Gao, W. Precision Nanometrology—Sensors and Measuring Systems for Nanomanufacturing; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Just, A.; Krause, M.; Probst, R.; Bosse, H.; Haunerdinger, H.; Spaeth, C.; Metz, G.; Israel, W. Comparison of angle standards with the aid of a high-resolution angle encoder. Precis. Eng. 2009, 33, 530–533. [Google Scholar] [CrossRef]
- Renishaw plc. RESOLUTE Absolute Optical Encoder with Biss Serial Communications; Renishaw plc: Wotton-under-Edge, UK, 2013; pp. 1–8. [Google Scholar]
- Magnescale, C. Feedback Scale General Catalog. Available online: http://www.magnescale.com/mgs/product/catalog/FeedbackScale_en.pdf (accessed on 29 May 2020).
- Miyashita, K.; Takahashi, T.; Yamanaka, M. Features of a magnetic rotary encoder. IEEE Trans. Magn. 1987, 23, 2182–2184. [Google Scholar] [CrossRef]
- Watanabe, T.; Kon, M.; Nabeshima, N.; Taniguchi, K. An angle encoder for super-high resolution and super-high accuracy using SelfA. Meas. Sci. Technol. 2014, 25, 065002. [Google Scholar] [CrossRef]
- Watanabe, T.; Fujimoto, H.; Masuda, T. Self-calibratable rotary encoder. J. Phys. Conf. Ser. 2005, 13, 240–245. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann. Manuf. Technol. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Kunzmann, H.; Pfeifer, T.; Flügge, J. Scales vs. Laser Interferometers Performance and Comparison of Two Measuring Systems. CIRP Ann. Manuf. Technol. 1993, 42, 753–767. [Google Scholar] [CrossRef]
- Cheng, F.; Fan, K.C. High-resolution angle measurement based on Michelson interferometry. Phys. Procedia 2011, 19, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.R. Foundations of Mechanical Accuracy; The Moore Special Tool Company: Bridgeport, CT, USA, 1970. [Google Scholar]
- Luther, G.G.; Deslattes, R.D.; Towler, W.R. Single axis photoelectronic autocollimator. Rev. Sci. Instrum. 1984, 55, 747–750. [Google Scholar] [CrossRef]
- Gao, W.; Ohnuma, T.; Satoh, H.; Shimizu, H.; Kiyono, S.; Makino, H. A precision angle sensor using a multi-cell photodiode array. CIRP Ann. Manuf. Technol. 2004, 53, 425–428. [Google Scholar] [CrossRef]
- Geckeler, R.D.; Just, A.; Krause, M.; Yashchuk, V.V. Autocollimators for deflectometry: Current status and future progress. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 616, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Geckeler, R.D.; Weingaertner, I.; Just, A.; Probst, R. Use and treaceable calibration of autocollimators for ultra-precise measurement of slope and topography. Recent Dev. Traceable Dimens. Meas. 2001, 4401, 184–195. [Google Scholar]
- Qian, S.; Geckeler, R.D.; Just, A.; Idir, M.; Wu, X. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 785, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Bitou, Y.; Kondo, Y. Scanning deflectometric profiler for measurement of transparent parallel plates. Appl. Opt. 2016, 55, 9282–9287. [Google Scholar] [CrossRef]
- Chen, M.; Xie, S.; Wu, H.; Takahashi, S.; Takamasu, K. Three-dimensional surface profile measurement of a cylindrical surface using a multi-beam angle sensor. Precis. Eng. 2020, 62, 62–70. [Google Scholar] [CrossRef]
- MÖLLER-WEDEL OPTICAL Electroninc Autocollimators. Available online: www.moeller-wedel-optical.com (accessed on 29 May 2020).
- Nikon Corporation Autocollimators 6B-LED/6D-LED. Available online: https://www.nikon.com/products/industrial-metrology/support/download/brochures/pdf/2ce-iwqh-4.pdf (accessed on 29 May 2020).
- Trioptics GmbH OptiTest (R) a Complete Range of Optical Instrument. Available online: http://www.trioptics.com (accessed on 29 May 2020).
- Ennos, A.E.; Virdee, M.S. High accuracy profile measurement of quasi-conical mirror surfaces by laser autocollimation. Precis. Eng. 1982, 4, 5–8. [Google Scholar] [CrossRef]
- Saito, Y.; Gao, W.; Kiyono, S. A single lens micro-angle sensor. Int. J. Precis. Eng. 2007, 8, 14–18. [Google Scholar]
- Shimizu, Y.; Tan, S.L.; Murata, D.; Maruyama, T.; Ito, S.; Chen, Y.-L.; Gao, W. Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions. Opt. Express 2016, 24, 2788–2805. [Google Scholar] [CrossRef]
- Gao, W.; Huang, P.S.; Yamada, T.; Kiyono, S. A compact and sensitive two-dimensional angle probe for flatness measurement of large silicon wafers. Precis. Eng. 2002, 26, 396–404. [Google Scholar] [CrossRef]
- Gao, W.; Saito, Y.; Muto, H.; Arai, Y.; Shimizu, Y. A three-axis autocollimator for detection of angular error motions of a precision stage. CIRP Ann. Manuf. Technol. 2011, 60, 515–518. [Google Scholar] [CrossRef]
- Li, X.; Gao, W.; Muto, H.; Shimizu, Y.; Ito, S.; Dian, S. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precis. Eng. 2013, 37, 771–781. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsukuma, H.; Gao, W. Optical sensors for multi-axis angle and displacement measurement using grating reflectors. Sensors 2019, 19, 5289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsukuma, H.; Ishizuka, R.; Furuta, M.; Li, X.; Shimizu, Y.; Gao, W. Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder. Nanomanuf. Metrol. 2019, 2, 111–123. [Google Scholar] [CrossRef]
- Gao, W.; Araki, T.; Kiyono, S.; Okazaki, Y.; Yamanaka, M. Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precis. Eng. 2003, 27, 289–298. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kataoka, S.; Ishikawa, T.; Chen, Y.L.; Chen, X.; Matsukuma, H.; Gao, W. A liquid-surface-based three-axis inclination sensor for measurement of stage tilt motions. Sensors 2018, 18, 398. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.J.; Cundiff, S.T.; Fortier, T.M.; Hall, J.L.; Ye, J. Carrier–Envelope Phase Stabilization of Single and Multiple Femtosecond Lasers. In Few-Cycle Laser Pulse Generation and Its Applications. Topics in Applied Physics; Kärtner, F.X., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 95, pp. 317–343. [Google Scholar]
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000, 288, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Udem, T.; Reichert, J.; Holzwarth, R.; Hänsch, T.W. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 1999, 24, 881–883. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Kim, S.-W. Distance Measurements Using Mode-Locked Lasers: A Review. Nanomanuf. Metrol. 2018, 1, 131–147. [Google Scholar] [CrossRef]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef]
- Bitou, Y.; Schibli, T.R.; Minoshima, K. Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator. Opt. Express 2006, 14, 644–654. [Google Scholar] [CrossRef]
- Kajima, M.; Matsumoto, H. Picometer positioning system based on a zooming interferometer using a femtosecond optical comb. Opt. Express 2008, 16, 1497–1506. [Google Scholar] [CrossRef]
- Joo, K.-N.; Kim, Y.; Kim, S.-W. Distance measurements by combined method based on a femtosecond pulse laser. Opt. Express 2008, 16, 19799–19806. [Google Scholar] [CrossRef]
- Bitou, Y. High-accuracy displacement metrology and control using a dual Fabry-Perot cavity with an optical frequency comb generator. Precis. Eng. 2009, 33, 187–193. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Kim, S.W. Metrology: Combs rule. Nat. Photonics 2009, 3, 313–314. [Google Scholar] [CrossRef]
- Bae, J.; Park, J.; Ahn, H.; Jin, J. Total physical thickness measurement of a multi-layered wafer using a spectral-domain interferometer with an optical comb. Opt. Express 2017, 25, 12689–12697. [Google Scholar] [CrossRef]
- Park, J.; Jin, J.; Wan Kim, J.; Kim, J.A. Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser. Opt. Commun. 2013, 305, 170–174. [Google Scholar] [CrossRef]
- Jin, J.; Kim, J.W.; Kim, J.A.; Eom, T.B. Thickness and refractive index measurement of a wafer based on the optical comb. Opt. InfoBase Conf. Pap. 2010, 18, 18339–18346. [Google Scholar]
- Kubina, P.; Adel, P.; Adler, F.; Grosche, G.; Hänsch, T.W.; Holzwarth, R.; Leitenstorfer, A.; Lipphardt, B.; Schnatz, H. Long term comparison of two fiber based frequency comb systems. Opt. Express 2005, 13, 904–909. [Google Scholar] [CrossRef]
- Adler, F.; Moutzouris, K.; Leitenstorfer, A.; Schnatz, H.; Lipphardt, B.; Grosche, G.; Tauser, F. Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. Opt. Express 2004, 12, 5872–5880. [Google Scholar] [CrossRef] [PubMed]
- Hundertmark, H.; Wandt, D.; Fallnich, C.; Haverkamp, N.; Telle, H.R. Phase-locked carrier-envelope-offset frequency at 1560 nm. Opt. Express 2004, 12, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Daimon, Y.; Hong, F.-L.; Onae, A.; Minoshima, K.; Schibli, T.R.; Matsumoto, H.; Hirano, M.; Okuno, T.; Onishi, M.; et al. Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb. Opt. Express 2006, 14, 5223–5231. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kudo, Y.; Chen, Y.L.; Ito, S.; Gao, W. An optical lever by using a mode-locked laser for angle measurement. Precis. Eng. 2017, 47, 72–80. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Shimitzu, Y.; Kudo, Y.; Ito, S.; Gao, W. Mode-locked laser autocollimator with an expanded measurement range. Opt. Express 2016, 24, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shimizu, Y.; Tamada, J.; Kudo, Y.; Madokoro, S.; Nakamura, K.; Gao, W.; Gao, W.; Kim, S.W.; Bosse, H.; et al. Optical frequency domain angle measurement in a femtosecond laser autocollimator. Opt. Express 2017, 25, 16725–16738. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Shimizu, Y.; Tamada, J.; Nakamura, K.; Matsukuma, H.; Chen, X.; Gao, W. Laser autocollimation based on an optical frequency comb for absolute angular position measurement. Precis. Eng. 2018, 54, 284–293. [Google Scholar] [CrossRef]
- Shimizu, Y.; Madokoro, S.; Matsukuma, H.; Gao, W. An optical angle sensor based on chromatic dispersion with a mode-locked laser source. J. Adv. Mech. Des. Syst. Manuf. 2018, 12. [Google Scholar] [CrossRef]
- Matsukuma, H.; Madokoro, S.; Dwi, W.; Yuki, A.; Wei, S. A New Optical Angle Measurement Method Based on Second Harmonic Generation with a Mode—Locked Femtosecond Laser. Nanomanuf. Metrol. 2019, 2, 187–198. [Google Scholar] [CrossRef]
- Dennis, M.L.; Diels, J.-C.M.; Lai, M. Femtosecond ring dye laser: A potential new laser gyro. Opt. Lett. 1991, 16, 529–531. [Google Scholar] [CrossRef]
- Diddams, S.; Atherton, B.; Diels, J.C. Frequency locking and unlocking in a femtosecond ring laser with application to intracavity phase measurements. Appl. Phys. B Lasers Opt. 1996, 63, 473–480. [Google Scholar] [CrossRef]
- Liang, X.; Lin, J.; Yang, L.; Wu, T.; Liu, Y.; Zhu, J. Simultaneous Measurement of Absolute Distance and Angle Based on Dispersive Interferometry. IEEE Photonics Technol. Lett. 2020, 32, 449–452. [Google Scholar] [CrossRef]
- Han, S.; Kim, Y.-J.; Kim, S.-W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt. Express 2015, 23, 25874–25882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, E.J. Sagnac effect. Rev. Mod. Phys. 1967, 39, 475–493. [Google Scholar] [CrossRef]
- Bergh, R.A.; Lefevre, H.C.; Shaw, H.J. An Overview of Fiber-optic Gyroscopes. J. Light. Technol. 1984, 2, 91–107. [Google Scholar] [CrossRef]
- Culshaw, B. Fibre optic gyroscopes. Phys. Technol. 1982, 13, 79–80. [Google Scholar] [CrossRef]
- Ezekiel, S.; Balsamo, S.R. Passive ring resonator laser gyroscope. Appl. Phys. Lett. 1977, 30, 478–480. [Google Scholar] [CrossRef]
- Kadiwar, R.K.; Giles, I.P. Optical Fibre Brillouin Ring Laser Gyroscope. Electron. Lett. 1989, 25, 1729–1731. [Google Scholar] [CrossRef]
- Rosker, M.J.; Christian, W.R.; Mcmichael, I.C.; Oaks, T. Picosecond-pulsed diode ring laser gyroscope. Proc. SPIE 1994, 2116, 365–373. [Google Scholar]
- Fortier, T.; Baumann, E. 20 Years of Developments in Optical Frequency Comb Technology and Applications. Commun. Phys. 2019, 2, 1–16. [Google Scholar] [CrossRef]
- Tausenev, A.V.; Kryukov, P.G.; Bubnov, M.M.; Likhachev, M.E.; Romanova, E.Y.; Yashkov, M.V.; Khopin, V.F.; Salganskii, M.Y. Efficient source of femtosecond pulses and its use for broadband supercontinuum generation. Kvantovaya Elektron. 2005, 35, 581–585. [Google Scholar] [CrossRef]
- Tamada, J.; Kudo, Y.; Chen, Y.-L.; Shimizu, Y.; Gao, W. Determination of the zero-position for an optical angle sensor. J. Adv. Mech. Des. Syst. Manuf. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Hecht, E. Optics, 5th ed.; Pearson: London, UK, 2017; ISBN 9780133977226. [Google Scholar]
- Acosta, D.; Albajez, J.A.; Yagüe-Fabra, J.A.; Velázquez, J. Verification of Machine Tools Using Multilateration and a Geometrical Approach. Nanomanuf. Metrol. 2018, 1, 39–44. [Google Scholar] [CrossRef]
- Shiou, F.J.; Liu, M.X. Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs). Opt. Lasers Eng. 2009, 47, 7–18. [Google Scholar] [CrossRef]
- Fan, K.C.; Chen, M.J. 6-Degree-of-freedom measurement system for the accuracy of X-Y stages. Precis. Eng. 2000, 24, 15–23. [Google Scholar] [CrossRef]
- Pellegrini, S.; Buller, G.S.; Smith, J.M.; Wallace, A.M.; Cova, S. Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 2000, 11, 712–716. [Google Scholar] [CrossRef]
- Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; van den Berg, S.A.; Urbach, H.P. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express 2011, 19, 6549–6562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, K.N.; Kim, S.W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef]
Utilized Characteristics | Physical Phenomenon/Measuring Technique to be Coupled |
---|---|
Stable discrete modes in frequency domain | ➢ Diffraction [54] ➢ Diffraction and laser autocollimation [55,56,57] ➢ Chromatic aberration [58] ➢ Sagnac effect [60,61] (Fiber optic gyroscope) ➢ Dispersive interferometry [62] (Absolute distance measurement) |
High pulse energy | ➢ Time-of-flight (TOF) counted by dual-comb interferometry with balanced cross-correlation of second harmonics [63] (Absolute distance measurement) ➢ Second-harmonic generation (SHG) [59] |
Type of the Optical Angle Sensor | Resolution and Measuring Range | Features (Advantages and Disadvantages) |
---|---|---|
Light intensity detecting-type mode-locked femtosecond laser autocollimator (in Section 2.1.2) [55] | Resolution: Sub-arc-second Range: >3° | ➢ High measurement throughput with a high-speed photodetector ➢ A grating reflector required ➢ Low signal visibility ➢ The resolution is mainly limited by the wavelength resolution of the spectrometer in the detector unit |
Frequency-domain mode-locked femtosecond laser autocollimator (in Section 2.1.3) [56,57] | Resolution: 0.03 arc-seconds Range: >6° | ➢ High signal visibility with a spectrometer that enables measurement of an object with low surface reflectivity ➢ A grating reflector required ➢ Low measurement throughput ➢ The resolution mainly limited by the wavelength resolution of the spectrometer in the detector unit |
A method based on the chromatic aberration of a simple lens (in Section 2.2) [58] | Resolution: 0.23 arc-seconds Range: >100 arc-seconds | ➢ Simple optical configuration without a grating reflector ➢ High signal visibility with a spectrometer ➢ The resolution mainly limited by the chromatic lens and the wavelength resolution of the spectrometer in the detector unit |
Methods based on the absolute distance measurement (in Section 3) [63] | Resolution: 0.073 arc-seconds Range: >300 arc-seconds | ➢ Long working distance ➢ High measurement throughput with a high-speed photodetector ➢ Several mirror reflectors are required ➢ The resolution mainly affected by environmental fluctuations (temperature, humidity, air pressure) |
A method based on the second harmonic generation (in Section 4) [59] | Resolution: 0.4 arc-seconds Range: >3.3° | ➢ High measurement throughput with a high-speed photodetector ➢ An expensive nonlinear crystal required ➢ Limited applications (need to mount a nonlinear crystal for angle measurement) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y.; Matsukuma, H.; Gao, W. Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser. Appl. Sci. 2020, 10, 4047. https://doi.org/10.3390/app10114047
Shimizu Y, Matsukuma H, Gao W. Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser. Applied Sciences. 2020; 10(11):4047. https://doi.org/10.3390/app10114047
Chicago/Turabian StyleShimizu, Yuki, Hiraku Matsukuma, and Wei Gao. 2020. "Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser" Applied Sciences 10, no. 11: 4047. https://doi.org/10.3390/app10114047
APA StyleShimizu, Y., Matsukuma, H., & Gao, W. (2020). Optical Angle Sensor Technology Based on the Optical Frequency Comb Laser. Applied Sciences, 10(11), 4047. https://doi.org/10.3390/app10114047