NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning
Abstract
:1. Introduction
2. Related Work
3. NetSel-RF Model
3.1. Motivation
3.2. Methodology
3.3. Data Interpretation
Listing 1: Parameter collection. |
3.4. Data Preparation
3.5. Modeling
4. Network Selection
4.1. Metrics and Evaluation Scenario
4.2. Results and Analysis
4.3. Practicability
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jain, A.; Tokekar, S. Application based vertical handoff decision in heterogeneous network. Procedia Comput. Sci. 2015, 57, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Salih, Y.K.; See, O.H.; Ibrahim, R.W.; Yussof, S.; Iqbal, A. An overview of intelligent selection and prediction method in heterogeneous wireless networks. J. Cent. South Univ. 2014, 21, 3138–3154. [Google Scholar] [CrossRef]
- Han, Z.; Lei, T.; Lu, Z.; Wen, X.; Zheng, W.; Guo, L. Artificial Intelligence-Based Handoff Management for Dense WLANs: A Deep Reinforcement Learning Approach. IEEE Access 2019, 7, 31688–31701. [Google Scholar] [CrossRef]
- Drissi, M.; Oumsis, M.; Aboutajdine, D. A multi-criteria decision framework for network selection over LTE and WLAN. Eng. Appl. Artif. Intell. 2017, 66, 113–127. [Google Scholar] [CrossRef]
- Lahby, M. Enhancing Modeling for Network Selection Using Graph Theory in Beyond 4G Networks. Int. J. Bus. Data Commun. Netw. 2020, 16, 48–69. [Google Scholar] [CrossRef]
- Malathy, E.; Muthuswamy, V. State of art: Vertical handover decision schemes in next-generation wireless network. J. Commun. Inf. Netw. 2018, 3, 43–52. [Google Scholar] [CrossRef]
- Chi, C.; Cai, X.; Hao, R.; Liu, F. Modeling and analysis of handover algorithms. In Proceedings of the IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 4473–4477. [Google Scholar]
- Nahida, K.; Yin, C.; Hu, Y.; Arain, Z.A.; Pan, C.; Khan, I.; Zhang, Y.; Rahman, G.S. Handover based on AP load in software defined Wi-Fi systems. J. Commun. Netw. 2017, 19, 596–604. [Google Scholar] [CrossRef]
- Khalaf, G.A.F.M.; Badr, H.Z. A comprehensive approach to vertical handoff in heterogeneous wireless networks. J. King Saud Univ. Comput. Inf. Sci. 2013, 25, 197–205. [Google Scholar]
- Khan, M.; Din, S.; Gohar, M.; Ahmad, A.; Cuomo, S.; Piccialli, F.; Jeon, G. Enabling multimedia aware vertical handover Management in Internet of Things based heterogeneous wireless networks. Multimed. Tools Appl. 2017, 76, 25919–25941. [Google Scholar] [CrossRef]
- Din, S.; Ahmad, A.; Paul, A.; Rho, S. MGR: Multi-parameter Green Reliable communication for Internet of Things in 5G network. J. Parallel Distrib. Comput. 2018, 118, 34–45. [Google Scholar] [CrossRef]
- Alotaibi, N.M.; Alwakeel, S.S. A neural network based handover management strategy for heterogeneous networks. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 1210–1214. [Google Scholar]
- Yu, H.W.; Zhang, B. A heterogeneous network selection algorithm based on network attribute and user preference. Ad Hoc Netw. 2018, 72, 68–80. [Google Scholar] [CrossRef]
- Goyal, P.; Lobiyal, D.; Katti, C. Dynamic user preference based network selection for vertical handoff in heterogeneous wireless networks. Wirel. Pers. Commun. 2018, 98, 725–742. [Google Scholar] [CrossRef]
- Ali, Z.; Baldo, N.; Mangues-Bafalluy, J.; Giupponi, L. Machine learning based handover management for improved QoE in LTE. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 794–798. [Google Scholar]
- Khan, M.; Ahmad, A.; Khalid, S.; Ahmed, S.H.; Jabbar, S.; Ahmad, J. Fuzzy based multi-criteria vertical handover decision modeling in heterogeneous wireless networks. Multimed. Tools Appl. 2017, 76, 24649–24674. [Google Scholar] [CrossRef]
- Goyal, R.; Goyal, T.; Kaushal, S.; Kumar, H. Fuzzy AHP Based Technique for Handover Optimization in Heterogeneous Network. In Proceedings of the 2nd International Conference on Communication, Computing and Networking, Chandigarh, India, 29–30 March 2018; Springer: Singapore, 2019; pp. 293–301. [Google Scholar]
- Khan, M.; Han, K. A vertical handover management scheme based on decision modelling in heterogeneous wireless networks. IETE Tech. Rev. 2015, 32, 402–412. [Google Scholar] [CrossRef]
- Sadik, M.; Akkari, N.; Aldabbagh, G. SDN-based handover scheme for multi-tier LTE/Femto and D2D networks. Comput. Netw. 2018, 142, 142–153. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, P.; Sharma, P. A Survey on Hoeffding Tree Stream Data Classification Algorithms. CPUH Res. J. 2015, 1, 28–32. [Google Scholar]
- Bifet, A.; Gavaldà, R. Adaptive learning from evolving data streams. In Proceedings of the International Symposium on Intelligent Data Analysis, Lyon, France, 31 August–2 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 249–260. [Google Scholar]
- Maulik, U.; Chakraborty, D. Remote Sensing Image Classification: A survey of support-vector-machine-based advanced techniques. IEEE Geosci. Remote. Sens. Mag. 2017, 5, 33–52. [Google Scholar] [CrossRef]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Ng, B.; Deng, A.; Qu, Y.; Seah, W.K. Changeover prediction model for improving handover support in campus area wlan. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 265–272. [Google Scholar]
- Goudarzi, S.; Hassan, W.H.; Anisi, M.H.; Soleymani, A.; Sookhak, M.; Khan, M.K.; Hashim, A.H.A.; Zareei, M. ABC-PSO for vertical handover in heterogeneous wireless networks. Neurocomputing 2017, 256, 63–81. [Google Scholar] [CrossRef]
- Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0: Step-by-Step Data Mining Guide; SPSS Inc.: Chicago, IL, USA, 2000; Volume 16. [Google Scholar]
- Williams, N.; Zander, S.; Armitage, G. A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 5–16. [Google Scholar] [CrossRef]
- Raschka, S. An overview of general performance metrics of binary classifier systems. arXiv 2014, arXiv:1410.5330. [Google Scholar]
- Larasati, H.T.; Ilma, F.H.; Nuhamara, B.; Mustafa, A.; Hakimi, R.; Mulyana, E. Performance evaluation of handover association mechanisms in sdn-based wireless network. In Proceedings of the 2017 3rd International Conference on Wireless and Telematics (ICWT), Palembang, Indonesia, 27–28 July 2017; pp. 103–108. [Google Scholar]
- Tuysuz, M.F.; Trestian, R. Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: A comprehensive survey. Wirel. Pers. Commun. 2017, 97, 1155–1184. [Google Scholar] [CrossRef] [Green Version]
- Chamodrakas, I.; Martakos, D. A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Appl. Soft Comput. 2011, 11, 3734–3743. [Google Scholar] [CrossRef]
- Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- Fontes, R.R.; Afzal, S.; Brito, S.H.; Santos, M.A.; Rothenberg, C.E. Mininet-WiFi: Emulating software-defined wireless networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 384–389. [Google Scholar]
- Hoeglinger, S.; Pears, R. Use of hoeffding trees in concept based data stream mining. In Proceedings of the 2007 Third International Conference on Information and Automation for Sustainability, Melbourne, Australia, 4–6 December 2007; pp. 57–62. [Google Scholar]
- Resende, P.A.A.; Drummond, A.C. A survey of random forest based methods for intrusion detection systems. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Castillo Morales, A.; Embus Gaviria, D. Final Dataset AP Selection and Algorithm Selection. Available online: https://github.com/juliancastillom/DataSet-AP_selection (accessed on 6 May 2020).
- Zeljković, E.; Marquez-Barja, J.M.; Kassler, A.; Riggio, R.; Latré, S. Proactive access point driven handovers in IEEE 802.11 networks. In Proceedings of the 2018 14th International Conference on Network and Service Management (CNSM), Rome, Italy, 5–9 November 2018; pp. 261–267. [Google Scholar]
- Costanzo, S.; Galluccio, L.; Morabito, G.; Palazzo, S. Software defined wireless networks: Unbridling SDNs. In Proceedings of the IEEE 2012 European Workshop on Software Defined Networking, Darmstadt, Germany, 25–26 October 2012; pp. 1–6. [Google Scholar]
- Tartarini, L.; Marotta, M.A.; Cerqueira, E.; Rochol, J.; Both, C.B.; Gerla, M.; Bellavista, P. Software-defined handover decision engine for heterogeneous cloud radio access networks. Comput. Commun. 2018, 115, 21–34. [Google Scholar] [CrossRef]
- Moura, H.; Alves, A.R.; Borges, J.R.; Macedo, D.F.; Vieira, M.A. Ethanol: A Software-Defined Wireless Networking architecture for IEEE 802.11 networks. Comput. Commun. 2020, 149, 176–188. [Google Scholar] [CrossRef]
- Estrada-Solano, F.; Ordonez, A.; Granville, L.Z.; Rendon, O.M.C. A framework for SDN integrated management based on a CIM model and a vertical management plane. Comput. Commun. 2017, 102, 150–164. [Google Scholar] [CrossRef]
- Ayoubi, S.; Limam, N.; Salahuddin, M.A.; Shahriar, N.; Boutaba, R.; Estrada-Solano, F.; Caicedo, O.M. Machine Learning for Cognitive Network Management. IEEE Commun. Mag. 2018, 56, 158–165. [Google Scholar] [CrossRef]
Proposal | Criterion | Metric | Complexity | |||||
---|---|---|---|---|---|---|---|---|
Network | Devices | User | Application | # of Handovers | Throughput | Type Handover | ||
[16] | √ | √ | √ | √ | High | |||
[19] | √ | √ | √ | √ | √ | Medium | ||
[13] | √ | √ | √ | √ | High | |||
[17] | √ | √ | Medium | |||||
[14] | √ | √ | √ | √ | Medium | |||
[12] | √ | √ | √ | √ | High | |||
[15] | √ | √ | √ | High | ||||
NetSel-RF | √ | √ | √ | √ | √ | √ | √ | Medium |
AP | SSID | Position [x,y,z] (m) | Range (m) | Channel | Total_Users_Support |
---|---|---|---|---|---|
ap1 | ap1-ssid | [50.0,150.0,0] | 45 | 1 | 15 |
ap2 | ap2-ssid | [90.0,180.0,0] | 50 | 7 | 18 |
ap3 | ap3-ssid | [130.0,150.0,0] | 45 | 11 | 15 |
ap4 | ap4-ssid | [90.0,90.0,0] | 57 | 11 | 20 |
Proposal | Criterion | Parameter | Description |
---|---|---|---|
[14,16,17] | Network | AP | Indicates which are the candidate APs that are in range of the mobile device. |
RSSI | Reference scale for measuring the power level of the signals received by a device and determining if the signal is sufficient to get a good wireless connection. | ||
AP Ocupation | Percentage of users connected to the AP concerning the entire capacity of users support the AP. | ||
[14] | Devices | Distance | Distance between mobile device and candidate AP. |
[31] | Device and Application | Battery consumption | Estimated discharge percentage of the device when it is connected to the candidate AP taking into account the applications used by the user and the distance to the AP. |
[32] | Application | Power consumption | Battery consumption in the mobile device due to the type of application that users are using in the handover moment. |
[13] | User | User Preference | User preference between good signal quality, lower battery consumption or good QoS. |
station | ap1 | rssi1 | ocu1 | con1 | ap2 | rssi2 | ocu2 | con2 | ap3 | rssi3 | ocu3 | con3 | ap4 | rssi4 | ocu4 | con4 | AP_Target | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sta1 | 0 | −100 | 100 | 1.00 | 1 | −69.0 | 66.67 | 0.031 | 1 | −72.0 | 46.67 | 0.031 | 0 | −100 | 100 | 1.00 | ap3 |
2 | sta2 | 0 | −100 | 100 | 1.00 | 1 | −55.0 | 55.56 | 0.010 | 1 | −76.0 | 60.00 | 0.041 | 0 | −100 | 100 | 1.00 | ap2 |
3 | sta3 | 0 | −100 | 100 | 1.00 | 0 | −100 | 100 | 1.00 | 1 | −69.0 | 53.33 | 0.024 | 1 | −76.00 | 45.00 | 0.052 | ap3 |
4 | sta4 | 0 | −100 | 100 | 1.00 | 1 | −74.0 | 66.67 | 0.046 | 1 | −66.0 | 60.00 | 0.018 | 1 | −77.00 | 40.00 | 0.056 | ap3 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
10500 | sta24 | 0 | −100.0 | 100.0 | 1.0 | 1 | −72.0 | 66.67 | 0.0376 | 1 | −64.0 | 46.67 | 0.0169 | 0 | −100.0 | 100.0 | 1.0 | ap3 |
Algorithms | TPR% | FPR% | Precision% | (ms) |
---|---|---|---|---|
RF | 99.70 | 0.29 | 99.68 | 3.865 |
ARF | 99.57 | 0.42 | 99.65 | 5.146 |
SVM | 90.57 | 9.42 | 92.99 | 1.445 |
HAT | 94.21 | 5.78 | 75.65 | 1.471 |
HT | 92.55 | 7.44 | 74.44 | 0.666 |
Movement | Mov1 | Mov2 | Mov3 | Mov4 | Mov5 | Mov6 | Mov7 | ||
---|---|---|---|---|---|---|---|---|---|
Variable | |||||||||
AP_target | AP2,loc1 | AP2,loc2 | AP2,loc3 | AP3,loc4 | AP2,loc5 | AP3,loc6 | AP2,loc7 | X | |
AP_target | AP2,loc1 | AP2,loc2 | AP2,loc3 | AP2,loc4 | AP2,loc5 | AP2,loc6 | AP2,loc7 | √ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Embus, D.A.; Castillo, A.J.; Vivas, F.Y.; Caicedo, O.M.; Ordóñez, A. NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning. Appl. Sci. 2020, 10, 4382. https://doi.org/10.3390/app10124382
Embus DA, Castillo AJ, Vivas FY, Caicedo OM, Ordóñez A. NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning. Applied Sciences. 2020; 10(12):4382. https://doi.org/10.3390/app10124382
Chicago/Turabian StyleEmbus, Daniela Alexandra, Andres Julián Castillo, Fulvio Yesid Vivas, Oscar Mauricio Caicedo, and Armando Ordóñez. 2020. "NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning" Applied Sciences 10, no. 12: 4382. https://doi.org/10.3390/app10124382
APA StyleEmbus, D. A., Castillo, A. J., Vivas, F. Y., Caicedo, O. M., & Ordóñez, A. (2020). NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learning. Applied Sciences, 10(12), 4382. https://doi.org/10.3390/app10124382