Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order
Abstract
:1. Introduction
- (A1)
- and are quotients of odd positive integers;
- (A2)
- and
- (A3)
- does not vanish identically and
- (A4)
- and
- (A5)
- and there exists a constant such that for , where .
2. Preliminary Results
3. Criteria for Nonexistence of Non-Kneser Solutions
4. Criteria for Nonexistence of Kneser Solutions
5. Oscillation Criteria
- 1.
- If for .
- 2.
- If there exists a positive function such that (26) and
Example
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Dassios, I.; Tzounas, G.; Milano, F. Model-Independent Derivative Control Delay Compensation Methods for Power Systems. Energies 2020, 13, 342. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Dassios, I.; Tzounas, G.; Milano, F. Stability Analysis of Power Systems with Inclusion of Realistic-Modeling of WAMS Delays. IEEE Trans. Power Syst. 2019, 34, 627–636. [Google Scholar] [CrossRef]
- Milano, F.; Dassios, I. Small-Signal Stability Analysis for Non-Index 1 Hessenberg Form Systems of Delay Differential-Algebraic Equations. IEEE Trans. Circuits Syst. Regul. Pap. 2016, 63, 1521–1530. [Google Scholar] [CrossRef]
- Dassios, I.; Zimbidis, A.; Kontzalis, C. The Delay Effect in a Stochastic Multiplier–Accelerator Model. J. Econ. Struct. 2014, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I.; Baleanu, D. Duality of singular linear systems of fractional nabla difference equations. Appl. Math. Model. 2015, 14, 4180–4195. [Google Scholar] [CrossRef]
- Dassios, I. Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations. Circuits Syst. Signal Process. 2015, 34, 1769–1797. [Google Scholar] [CrossRef]
- Abdalla, B.; Abdeljawad, T. On the oscillation of Hadamard fractional differential equations. Adv. Differ. Equ. 2018, 2018, 409. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I.; Baleanu, D. Optimal solutions for singular linear systems of Caputo fractional differential equations. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I.; Baleanu, D. Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 2018, 337, 591–606. [Google Scholar] [CrossRef]
- Dassios, I. A practical formula of solutions for a family of linear non-autonomous fractional nabla difference equations. J. Comput. Appl. Math. 2018, 339, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Dassios, I. Stability and robustness of singular systems of fractional nabla difference equations. Circuits Syst. Signal Process. 2017, 36, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Bellen, A.; Guglielmi, N.; Ruehli, A.E. Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1999, 46, 212–215. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Zhang, B. On a neutral delay–logistic equation. Dyn. Stab. Syst. 1987, 2, 183–195. [Google Scholar] [CrossRef]
- Kolmanovskii, V.B.; Nosov, V.R. Stability and Periodic Modes of Control Systems with After–Effect; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Liu, M.; Dassios, I.; Milano, F. On the Stability Analysis of Systems of Neutral Delay Differential Equations. Circuits Syst. Signal Process. 2019, 38, 1639–1653. [Google Scholar] [CrossRef] [Green Version]
- Pao, B.M.; Liu, C.; Yin, G. Topics in Stochastic Analysis and Nonparametric Estimation; Science Business Media: New York, NY, USA, 2008. [Google Scholar]
- Bainov, D.D.; Mishev, D.P. Oscillation Theory for Neutral Differential Equations with Delay; Adam Hilger: New York, NY, USA, 1991. [Google Scholar]
- Leibniz, G. Acta Eruditorm, a Source Book in Mathematics, 1200–1800; Struik, D.J., Ed.; Prenceton Unversity Press: Prenceton, NJ, USA, 1986. [Google Scholar]
- Erbe, L.; Kong, Q.K.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Xing, G.; Li, T.; Zhang, C. Osillation of higher-order quasi-linear neutral differential equation. Adv. Differ. Equ. 2011, 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, T.H. Introduction to the Theory of Integration; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Baculikova, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2011, 24, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovska, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 2017, 330. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Baleanu, D.; Muhib, A. New Aspects for Non-Existence of Kneser Solutions of Neutral Differential Equations with Odd-Order. Mathematics 2020, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Dassios, I.; Bazighifan, O.; Muhib, A. Oscillation Theorems for Nonlinear Differential Equations of Fourth-Order. Mathematics 2020, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. Appl. Sci. 2020, 10, 3130. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Bazighifan, O. Oscillation Criteria of Higher-order Neutral Differential Equations with Several Deviating Arguments. Mathematics 2020, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Dzurina, J.; Grace, S.R.; Jadlovska, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Thandapani, E.; Tamilvanan, S.; Jambulingam, E.; Tech, V.T.M. Oscillation of third order half linear neutral delay differential equations. Int. J. Pure Appl. Math. 2012, 77, 359–368. [Google Scholar]
- Jiang, Y.; Li, T. Asymptotic behavior of a third-order nonlinear neutral delay differential equation. J. Inequal. Appl. 2014, 2014, 512. [Google Scholar] [CrossRef] [Green Version]
- Tunc, E. Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017, 2017, 16. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Hassan, T.S.; Elmatary, B.M. Oscillation criteria for third order delay nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2012, 2012, 11. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47, 181–199. [Google Scholar]
- Graef, J.R.; Tunc, E.; Grace, S.R. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc. Math. 2017, 37, 839–852. [Google Scholar] [CrossRef]
- Dzurina, J.; Thandapani, E.; Tamilvanan, S. Oscillation of solutions to third-order half-linear neutral differential equations. Electron. J. Differ. Equ. 2012, 2012, 1–9. [Google Scholar]
- Li, T.; Zhang, C.; Xing, G. Oscillation of third-order neutral delay differential equations. In Abstract and Applied Analysis; Hindawi: London, UK, 2012; Volume 2012. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. On asymptotic behavior of solutions to higher-order sublinear emden–fowler delay differential equations. Appl. Math. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Pavani, R.; Thandapani, E. On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 2008, 202, 102–112. [Google Scholar] [CrossRef]
- Candan, T. Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations. Adv. Differ. Equ. 2014, 2014, 35. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 55. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Abdeljawad, T. Improved approach for studying oscillatory properties of fourth-order advanced differential equations with p-Laplacian like operator. Mathematics 2020, 8, 656. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 2019, 336, 1–9. [Google Scholar]
- Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, 2019, 484. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. Adv. Differ. Equ. 2017, 2017, 261. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 2019, 2019, 297. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Shaaban, E. Oscillation criteria for a class of third order damped differential equations. Arab. J. Math. Sci. 2018, 24, 16–30. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.B.; Zhang, G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order. Appl. Sci. 2020, 10, 4855. https://doi.org/10.3390/app10144855
Moaaz O, Dassios I, Muhsin W, Muhib A. Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order. Applied Sciences. 2020; 10(14):4855. https://doi.org/10.3390/app10144855
Chicago/Turabian StyleMoaaz, Osama, Ioannis Dassios, Waad Muhsin, and Ali Muhib. 2020. "Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order" Applied Sciences 10, no. 14: 4855. https://doi.org/10.3390/app10144855
APA StyleMoaaz, O., Dassios, I., Muhsin, W., & Muhib, A. (2020). Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order. Applied Sciences, 10(14), 4855. https://doi.org/10.3390/app10144855