Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network
Abstract
:1. Introduction
2. Numerical Model
2.1. Submerged Floating Tunnel
2.2. Time-Domain Numerical Simulation
2.3. Big-Data Generation under Various Environmental Conditions and Failure Scenarios
3. Deep Neural Network
3.1. Artificial Neural Network
3.2. Neural Network Model Architecture
3.3. Building Neural Network for Classification Tasks
4. Results and Discussions
4.1. Failure Identification Examples
4.2. Optimization
4.2.1. Hidden Layer and Neuron
4.2.2. Activation Function and Optimizer
4.3. Failure-Detection Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- di Pilato, M.; Perotti, F.; Fogazzi, P. 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation. Eng. Struct. 2008, 30, 268–281. [Google Scholar] [CrossRef]
- Faggiano, B.; Landolfo, R.; Mazzolani, F. The SFT: An innovative solution for waterway strait crossings. In IABSE Symposium Report; International Association for Bridge and Structural Engineering: Lisbon, Portugal, 2005; Volume 90, pp. 36–42. [Google Scholar]
- Seo, S.-I.; Mun, H.-S.; Lee, J.-H.; Kim, J.-H. Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification. Marine Struct. 2015, 44, 142–158. [Google Scholar] [CrossRef]
- Chen, Z.; Xiang, Y.; Lin, H.; Yang, Y. Coupled vibration analysis of submerged floating tunnel system in wave and current. Appl. Sci. 2018, 8, 1311. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Ge, F.; Hong, Y. Feasibility study on buoyancy–weight ratios of a submerged floating tunnel prototype subjected to hydrodynamic loads. Acta Mech. Sin. 2015, 31, 750–761. [Google Scholar] [CrossRef]
- Lu, W.; Ge, F.; Wang, L.; Wu, X.; Hong, Y. On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions. Marine Struct. 2011, 24, 358–376. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Kim, M.-H. Time-domain hydro-elastic analysis of a SFT (submerged floating tunnel) with mooring lines under extreme wave and seismic excitations. Appl. Sci. 2018, 8, 2386. [Google Scholar] [CrossRef] [Green Version]
- Won, D.; Seo, J.; Kim, S.; Park, W.-S. Hydrodynamic Behavior of Submerged Floating Tunnels with Suspension Cables and Towers under Irregular Waves. Appl. Sci. 2019, 9, 5494. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Sohn, H. Structural Displacement Estimation by FIR Filter Based Fusion of Strain and Acceleration Measurements. In Proceedings of the 29th International Ocean. and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; International Society of Offshore and Polar Engineers: Cupertino, CA, USA, 2019. [Google Scholar]
- Choi, J.; Kim, J.M.-H. Development of a New Methodology for Riser Deformed Shape Prediction/Monitoring. In Proceedings of the ASME 2018 37th International Conference on Ocean., Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2018. [Google Scholar]
- Mercan, B.; Chandra, Y.; Maheshwari, H.; Campbell, M. Comparison of Riser Fatigue Methodologies Based on Measured Motion Data. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2016; Offshore Technology Conference, Inc.: Houston, TX, USA, 2016. [Google Scholar]
- Chung, M.; Kim, S.; Lee, K.; Shin, D.H. Detection of damaged mooring line based on deep neural networks. Ocean Eng. 2020, 209, 107522. [Google Scholar] [CrossRef]
- Jaiswal, V.; Ruskin, A. Mooring Line Failure Detection Using Machine Learning. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2019; Offshore Technology Conference, Inc.: Houston, TX, USA, 2019. [Google Scholar]
- Sidarta, D.E.; Lim, H.-J.; Kyoung, J.; Tcherniguin, N.; Lefebvre, T.; O’Sullivan, J. Detection of Mooring Line Failure of a Spread-Moored FPSO: Part 1—Development of an Artificial Neural Network Based Model. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Glasgow, Scotland, UK, 9–14 June 2019; American Society of Mechanical Engineers: New York, NY, USA; Volume 58769, p. V001T01A042. [Google Scholar]
- Sidarta, D.E.; O’Sullivan, J.; Lim, H.-J. Damage detection of offshore platform mooring line using artificial neural network. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA; Volume 51203, p. V001T01A058. [Google Scholar]
- Orcina. OrcaFlex Manual. Available online: https://www.orcina.com/SoftwareProducts/OrcaFlex/index.php (accessed on 17 October 2018).
- Jin, C.; Kim, M.-H. Tunnel-mooring-train coupled dynamic analysis for submerged floating tunnel under wave excitations. Appl. Ocean. Res. 2020, 94, 102008. [Google Scholar] [CrossRef]
- Cifuentes, C.; Kim, S.; Kim, M.; Park, W. Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves. Ocean Syst. Eng. 2015, 5, 109–123. [Google Scholar] [CrossRef]
- Kim, H.; Jin, C.; Kim, M.; Kim, K. Damage detection of bottom-set gillnet using Artificial Neural Network. Ocean Eng. 2020, 208, 107423. [Google Scholar] [CrossRef]
- Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Anderson, D.; McNeill, G. Artificial neural networks technology. Kaman Sci. Corp. 1992, 258, 1–83. [Google Scholar]
- Rumelhart, D.; McCelland, G.; Williams, T. Training Hidden Units: Generalized Delta Rule. Explor. Parallel Distrib. Process. 1986, 2, 121–160. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Agarap, A.F. Deep Learning Using Rectified Linear Units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9, December 2017; Neural Information Processing Systems: San Diego, CA, USA; pp. 4148–4158. [Google Scholar]
- Keskar, N.S.; Socher, R. Improving Generalization Performance by Switching from Adam to Sgd. arXiv 2017, arXiv:1712.07628. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–31. [Google Scholar]
- Mukkamala, M.C.; Hein, M. Variants of Rmsprop and Adagrad with Logarithmic Regret Bounds. arXiv 2017, arXiv:1706.05507. [Google Scholar]
- Zheng, W.; Dan, D.; Cheng, W.; Xia, Y. Real-time dynamic displacement monitoring with double integration of acceleration based on recursive least squares method. Measurement 2019, 141, 460–471. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.M.-H. Development of a New Methodology for Riser Deformed Shape Prediction/Monitoring. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 51241, p. V005T04A041. [Google Scholar]
- Kohavi, R.; Provost, F. Confusion matrix. Mach. Learn. 1998, 30, 271–274. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Tunnel length | 800 | m |
Tunnel diameter | 20 | m |
Interval of mooring lines | 100 | m |
End boundary condition | Fixed-fixed | - |
Material of tunnel | High-density concrete | - |
Length of mooring lines | 50.2 (line #1,2), 38.7 (line #3,4) | m |
Added mass coefficient | 1.0 | - |
Nominal diameter of mooring lines | 0.18 | m |
Drag coefficient | 0.55 (tunnel), 2.4 (mooring lines) | - |
Bending stiffness (EI) | 1.34 × 1011 (tunnel), 0 (mooring lines) | kN·m2 |
Axial stiffness (EA) | 3.23 × 109 (tunnel), 2.77 × 106 (mooring lines) | kN |
Item | Failure Case | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | In | |
Tunnel Location (m) | −300 | −200 | −100 | 0 | −300 | −200 | −100 | 0 | - | ||||||||||||
Mooring Line Number | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | All | All | All | All | - |
Significant Wave Height (Hs) (m) | Peak Period (Tp) (s) | Data Usage |
---|---|---|
1 | 6 | Tr (80%), Te (20%) |
1 | 10.5 | Tr (80%), Te (20%) |
1 | 13 | Tr (80%), Te (20%) |
5 | 6 | Tr (80%), Te (20%) |
5 | 10.5 | Tr (80%), Te (20%) |
5 | 13 | Tr (80%), Te (20%) |
11.7 | 10.5 | Tr (80%), Te (20%) |
11.7 | 13 | Tr (80%), Te (20%) |
3 | 8 | Te (100%) |
7 | 12 | Te (100%) |
Parameter | Characteristic | Advantage | Disadvantage | |
---|---|---|---|---|
Activation function | Sigmoid |
|
|
|
ReLU |
|
| ||
Tanh |
|
|
| |
SELU |
|
|
| |
Optimizer | Adam |
|
| |
Adamax |
|
| ||
RMSProp |
|
| ||
AdaGrad |
|
|
|
Sensor Location | ||||||
---|---|---|---|---|---|---|
2, 5, 8 | 2, 4, 6, 8 | 3, 4, 5, 6, 7 | 2, 3, 5, 7, 8 | 2, 4, 5, 6, 8 | 2, 3, 4, 5, 6, 7, 8 | |
Accuracy (%) | 84.1 | 90.4 | 92.9 | 94.2 | 96.7 | 98.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, D.-S.; Jin, C.; Kim, M.; Koo, W. Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network. Appl. Sci. 2020, 10, 6591. https://doi.org/10.3390/app10186591
Kwon D-S, Jin C, Kim M, Koo W. Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network. Applied Sciences. 2020; 10(18):6591. https://doi.org/10.3390/app10186591
Chicago/Turabian StyleKwon, Do-Soo, Chungkuk Jin, MooHyun Kim, and Weoncheol Koo. 2020. "Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network" Applied Sciences 10, no. 18: 6591. https://doi.org/10.3390/app10186591
APA StyleKwon, D. -S., Jin, C., Kim, M., & Koo, W. (2020). Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network. Applied Sciences, 10(18), 6591. https://doi.org/10.3390/app10186591