A Review on Upper Limb Rehabilitation Robots
Abstract
:1. Introduction
2. Rehabilitation Treatments
2.1. Passive Therapy
2.2. Active Therapy
2.3. Bilateral Therapy
3. Rehabilitation Robots and Their Classifications
3.1. According to Robot Treatment Approaches
3.2. According to the Robot Structures
4. Examples of Rehabilitation Robots
4.1. MIT-MANUS
4.2. MIME
4.3. Assisted Rehabilitation and Measurement (ARM) Guide
4.4. ARMin
4.5. Cable Actuated Dexterous Exoskeleton for Neuro-Rehabilitation with Seven Degrees of Freedom (CADEN-7)
4.6. L-EXOS
4.7. Therapy Wilmington Exoskeleton (T-Wrex)
4.8. REHAROB
4.9. Exoskeleton Biomimetic Orthosis for Neurorehabilitation (BONES)
5. EMG-Driven Exoskeleton Robots
5.1. Hand Exoskeleton
5.2. Exoskeleton Based on the Neuro-Fuzzy Control Method
5.3. SUEFUL-7 Exoskeleton Based on the Muscle-Model-Oriented Control Method
5.4. NEUROExos Based on the Proportional Control Method
5.5. Exoskeleton Robots Based on the Artificial Neural Network Control Method
5.6. Arm Exoskeleton Employs a Genetic Algorithm as a Control Method
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [Google Scholar] [CrossRef] [PubMed]
- Alrabghi, L.; Alnemari, R.; Aloteebi, R.; Alshammari, H.; Ayyad, M.; Al Ibrahim, M.; Alotayfi, M.; Bugshan, T.; Alfaifi, A.; Aljuwayd, H. Stroke types and management. Int. J. Community Med. Public Health 2018, 5, 3715. [Google Scholar] [CrossRef]
- Morris, M. A Review of Rehabilitation Strategies for Stroke Recovery. ASME Early Career Tech. Conf. 2015, 11, 24–31. [Google Scholar]
- Lum, P.S.; Burgar, C.G.; Shor, P.C. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Lang, C.E.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 4422, 1–13. [Google Scholar] [CrossRef]
- Sebastian, G.; Li, Z.; Tan, Y.; Oetomo, D. Force Observer for an Upper Limb Rehabilitation Robotic Device using Iterative Learning Control. In Proceedings of the 12th Asian Control Conference ASCC, Kitakyushu-shi, Japan, 9–12 June 2019; pp. 1607–1612. [Google Scholar]
- Hu, X.L.; Tong, K.Y.; Song, R.; Zheng, X.J.; Leung, W.W.F. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil. Neural Repair 2009, 23, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.L.; Tong, R.K.Y.; Ho, N.S.K.; Xue, J.J.; Rong, W.; Li, L.S.W. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot after Stroke. Neurorehabil. Neural Repair 2015, 29, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Proietti, T.; Crocher, V.; Roby-Brami, A.; Jarrasse, N. Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies. IEEE Rev. Biomed. Eng. 2016, 9, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Active vs. Passive Exercises during Rehabilitation—Flint Rehab. Available online: https://www.flintrehab.com/active-vs-passive-exercises-during-rehab/ (accessed on 23 July 2020).
- Schmit, B.D.; Dewald, J.P.A.; Rymer, W.Z. Stretch reflex adaptation in elbow flexors during repeated passive movements in unilateral brain-injured patients. Arch. Phys. Med. Rehabil. 2000, 81, 269–278. [Google Scholar] [CrossRef]
- Głowiński, S.; Blażejewski, A. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm. Acta Bioeng. Biomech. 2019, 21, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, N.; Lenzi, T.; Roccella, S.; De Rossi, S.M.M.; Cattin, E.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Trans. Robot. 2013, 29, 220–235. [Google Scholar] [CrossRef]
- Ren, Y.; Kang, S.H.; Park, H.S.; Wu, Y.N.; Zhang, L.Q. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Ueda, J.; Ming, D.; Krishnamoorthy, V.; Shinohara, M.; Ogasawara, T. Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 339–350. [Google Scholar] [CrossRef]
- Kirihara, K.; Saga, N.; Saito, N. Design and control of an upper limb rehabilitation support device for disabled people using a pneumatic cylinder. Ind. Robot 2010, 37, 354–363. [Google Scholar] [CrossRef]
- Subasi, A. Electromyogram-Controlled Assistive Devices; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 285–311. ISBN 9780081024201. [Google Scholar]
- Fasoli, S.E.; Krebs, H.I.; Stein, J.; Frontera, W.R.; Hughes, R.; Hogan, N. Robotic therapy for chronic motor impairments after stroke: Follow-up results. Arch. Phys. Med. Rehabil. 2004, 85, 1106–1111. [Google Scholar] [CrossRef]
- Hesse, S.; Schmidt, H.; Werner, C.; Bardeleben, A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 2003, 16, 705–710. [Google Scholar] [CrossRef]
- Miao, Q.; Zhang, M.; McDaid, A.; Peng, Y.; Xie, S.Q. A robot-assisted bilateral upper limb training strategy with subject-specific workspace: A pilot study. Robot. Auton. Syst. 2020, 124, 103334. [Google Scholar] [CrossRef]
- Sheng, B.; Zhang, Y.; Meng, W.; Deng, C.; Xie, S. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Med. Eng. Phys. 2016, 38, 587–606. [Google Scholar] [CrossRef]
- Pignolo, L.; Dolce, G.; Basta, G.; Lucca, L.F.; Serra, S.; Sannita, W.G. Upper limb rehabilitation after stroke: ARAMIS a robo-mechatronic innovative approach and prototype. In Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1410–1414. [Google Scholar] [CrossRef]
- Bogue, R. Rehabilitation robots. Ind. Robot 2018, 45, 301–306. [Google Scholar] [CrossRef]
- Ossmy, O.; Mukamel, R. Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience. Neuroscience 2018, 382, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Austin, H.; Buchanan, S.; Herman, R.; Koeneman, J.; He, J. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar] [CrossRef]
- Sanjuan, J.D.; Castillo, A.D.; Padilla, M.A.; Quintero, M.C.; Gutierrez, E.E.; Sampayo, I.P.; Hernandez, J.R.; Rahman, M.H. Cable driven exoskeleton for upper-limb rehabilitation: A design review. Robot. Auton. Syst. 2020, 126, 103445. [Google Scholar] [CrossRef]
- Song, R.; Tong, K.Y.; Hu, X.; Li, L. Assistive Control System Using Continuous Myoelectric Signal in Robot-Aided Arm Training for Patients After Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nef, T.; Quinter, G.; Müller, R.; Riener, R. Effects of arm training with the robotic device ARMin i in chronic stroke: Three single cases. Neurodegener. Dis. 2009, 6, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Spiewak, C.; Rahman, M.H.; Fareh, R. A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap between Research Porotype and Commercial Type. Adv. Robot. Autom. 2017, 6. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef]
- Cesqui, B.; Tropea, P.; Micera, S.; Krebs, H.I. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: A feasibility study. J. Neuroeng. Rehabil. 2013, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Shoushtari, A.L.; Dario, P.; Mazzoleni, S. A review on the evolvement trend of robotic interaction control. Ind. Robot 2016, 43, 535–551. [Google Scholar] [CrossRef]
- Guo, S.; Gao, J.; Guo, J.; Zhang, W.; Hu, Y. Design of the structural optimization for the upper limb rehabilitation robot. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 1185–1190. [Google Scholar] [CrossRef]
- Wei, G.; Ren, L.; Dai, J.S. Prehension of an Anthropomorphic Metamorphic Robotic Hand. Int. Conf. Intell. Robot. Appl. 2017, 1, 71–83. [Google Scholar] [CrossRef]
- Hogan, N.; Krebs, H.I.; Charnnarong, J.; Srikrishna, P.; Sharon, A. MIT-MANUS: A Workstation for Manual Therapy and Training I. In Proceedings of the IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, 1–3 September 1992; pp. 161–165. [Google Scholar] [CrossRef]
- Krebs, H.I.; Dipietro, L.; Levy-Tzedek, S.; Fasoli, S.E.; Rykman-Berland, A.; Zipse, J.; Fawcett, J.A.; Stein, J.; Poizner, H.; Lo, A.C.; et al. A paradigm shift for rehabilitation robotics. IEEE Eng. Med. Biol. Mag. 2008, 27, 61–70. [Google Scholar] [CrossRef]
- Lum, P.S.; Burgar, C.G.; Shor, P.C.; Majmundar, M.; Van der Loos, M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nef, T.; Mihelj, M.; Colombo, G.; Riener, R. ARMin—Robot for rehabilitation of the upper extremities. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 3152–3157. [Google Scholar] [CrossRef]
- Turchetti, G.; Vitiello, N.; Trieste, L.; Romiti, S.; Geisler, E.; Micera, S. Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. IEEE Rev. Biomed. Eng. 2014, 7, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Reinkensmeyer, D.J.; Kahn, L.E.; Averbuch, M.; McKenna-Cole, A.; Schmit, B.D.; Zev Rymer, W. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide. J. Rehabil. Res. Dev. 2000, 37, 653–662. [Google Scholar] [PubMed]
- Mihelj, M.; Nef, T.; Riener, R. ARMin II—7 DoF rehabilitation robot: Mechanics and kinematics. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 4120–4125. [Google Scholar] [CrossRef]
- Nef, T.; Riener, R. ARMin—Design of a novel arm rehabilitation robot. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 57–60. [Google Scholar] [CrossRef]
- Keller, U.; Schölch, S.; Albisser, U.; Rudhe, C.; Curt, A.; Riener, R.; Klamroth-Marganska, V. Robot-assisted arm assessments in spinal cord injured patients: A consideration of concept study. PLoS ONE 2015, 10, e0126948. [Google Scholar] [CrossRef]
- Perry, J.C.; Rosen, J.; Burns, S. Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 2007, 12, 408–417. [Google Scholar] [CrossRef]
- Hussain, J.; Sundaraj, K.; Low, Y.F.; Lam, C.K.; Sundaraj, S.; Ali, M.A. A systematic review on fatigue analysis in triceps brachii using surface electromyography. Biomed. Signal Process. Control 2018, 40, 396–414. [Google Scholar] [CrossRef]
- Dehem, S.; Montedoro, V.; Edwards, M.G.; Detrembleur, C.; Stoquart, G.; Renders, A.; Heins, S.; Bruno, D.; Lejeune, T. Development of a robotic upper limb assessment to configure a serious game. NeuroRehabilitation 2019, 44, 263–274. [Google Scholar] [CrossRef]
- Frisoli, A.; Bergamasco, M.; Carboncini, M.C.; Rossi, B. Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud. Health Technol. Inform. 2009, 145, 40–54. [Google Scholar] [CrossRef]
- Housman, S.J.; Le, V.; Rahman, T.; Sanchez, R.J.; Remkensrneyer, D.J. Arm-training with T-WREX after chronic stroke: Preliminary results of a randomized controlled trial. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 562–568. [Google Scholar] [CrossRef]
- Rehmat, N.; Zuo, J.; Meng, W.; Liu, Q.; Xie, S.Q.; Liang, H. Upper Limb Rehabilitation using Robotic Exoskeleton Systems: A Systematic Review. Int. J. Intell. Robot. Appl. 2018, 2, 283–295. [Google Scholar] [CrossRef]
- Fazekas, G.; Horvath, M.; Troznai, T.; Toth, A. Robot-Mediated upper Limb Physiotherapy for Patients with Spastic Hemiparesis: A Preliminary Study. J. Rehabil. Med. 2007, 39, 580–582. [Google Scholar] [CrossRef] [Green Version]
- Toth, A.; Fazekas, G.; Arz, G.; Jurak, M.; Horvath, M. Passive Robotic Movement Therapy of the Spastic Hemiparetic Arm with REHAROB: Report of the First Clinical Test and the Follow-up System Improvement. In Proceedings of the 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 127–130. [Google Scholar]
- Klein, J.; Spencer, S.J.; Allington, J.; Minakata, K.; Wolbrecht, E.T.; Smith, R.; Bobrow, J.E.; Reinkensmeyer, D.J. Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES). In Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19–22 October 2008; pp. 535–541. [Google Scholar] [CrossRef]
- Ruiz-Olaya, A.F.; Quinayas Burgos, C.A.; Londono, L.T. A Low-Cost Arm Robotic Platform based on Myoelectric Control for Rehabilitation Engineering. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 929–933. [Google Scholar] [CrossRef]
- Gopura, R.A.; Bandara, D.S.; Gunasekara, J.M. Recent Trends in EMG-Based Control Methods for Assistive Robots. Electrodiagnosis New Front. Clin. Res. 2013. [Google Scholar] [CrossRef] [Green Version]
- Sidek, M.H.M.; Hasan, W.Z.W.; Kadir, M.Z.A.A.; Shafie, S.; Radzi, M.A.M.; Ahmad, S.A.; Marhaban, M.H. GPS based portable dual-axis solar tracking system using astronomical equation. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014; pp. 245–249. [Google Scholar] [CrossRef]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.I.; Ahmad, S.A.; Zamzuri, H.; Mazlan, S.A. A review of classification techniques of EMG signals during isotonic and isometric contractions. Sensors 2016, 16, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Chatterji, S.; Kumar, A. Trends and challenges in EMG based control scheme of exoskeleton robots-a review. Int. J. Sci. Eng. Res. 2012, 3, 933–940. [Google Scholar]
- Sabry, A.H.; Hasan, W.Z.W.; Ab Kadir, M.Z.A.; Radzi, M.A.M.; Shafie, S. DC-based smart PV-powered home energy management system based on voltage matching and RF module. PLoS ONE 2017, 12, e0185012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiCicco, M.; Lucas, L.; Matsuoka, Y. Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1622–1627. [Google Scholar] [CrossRef]
- Wege, A.; Zimmermann, A. Electromyography sensor based control for a hand exoskeleton. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 1470–1475. [Google Scholar] [CrossRef]
- Kiguchi, K.; Tanaka, T.; Fukuda, T. Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Trans. Fuzzy Syst. 2004, 12, 481–490. [Google Scholar] [CrossRef]
- Gopura, R.A.R.C.; Kiguchi, K. Mechanical designs of active upper-limb exoskeleton robots state-of-the-art and design difficulties. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 178–187. [Google Scholar] [CrossRef]
- Lenzi, T.; De Rossi, S.M.M.; Vitiello, N.; Carrozza, M.C. Proportional EMG control for upper-limb powered exoskeletons. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 628–631. [Google Scholar] [CrossRef]
- Cavallaro, E.E.; Rosen, J.; Perry, J.C.; Burns, S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 2006, 53, 2387–2396. [Google Scholar] [CrossRef]
- Jakob, I.; Kollreider, A.; Germanotta, M.; Benetti, F.; Cruciani, A.; Padua, L.; Aprile, I. Robotic and Sensor Technology for Upper Limb Rehabilitation. Phys. Med. Rehabil. 2018, 10, S189–S197. [Google Scholar] [CrossRef] [Green Version]
- Almassri, A.M.M.; Hasan, W.Z.W.; Ahmad, S.A.; Ishak, A.J. A sensitivity study of piezoresistive pressure sensor for robotic hand. In Proceedings of the RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics, Langkawi, Malaysia, 25–27 September 2013; pp. 394–397. [Google Scholar] [CrossRef]
- Fukuda, O.; Tsuji, T.; Ohtsuka, A.; Kaneko, M. EMG-based human-robot interface for rehabilitation aid. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 20–20 May 1998; Volume 4, pp. 3492–3497. [Google Scholar] [CrossRef]
- Kiguchi, K.; Kariya, S.; Watanabe, K.; Izumi, K.; Fukuda, T. An exoskeletal robot for human elbow motion support—Sensor fusion, adaptation, and control. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 2001, 31, 353–361. [Google Scholar] [CrossRef]
- Kiguchi, K.; Esaki, R.; Tsuruta, T.; Watanabe, K.; Fukuda, T. An Exoskeleton for Human Elbow and Forearm Motion Assist. IEEE Int. Conf. Intell. Robot. Syst. 2003, 4, 3600–3605. [Google Scholar] [CrossRef]
- Kiguchi, K.; Quan, Q. Muscle-model-oriented EMG-based control of an upper-limb power-assist exoskeleton with a neuro-fuzzy modifier. In Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 1179–1184. [Google Scholar] [CrossRef]
- Unanyan, N.N.; Belov, A.A. Signal-based approach to EMG-sensor fault detection in upper limb prosthetics. In Proceedings of the 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019. [Google Scholar] [CrossRef]
- Song, R.; Tong, K.Y. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations. Med. Biol. Eng. Comput. 2005, 43, 473–480. [Google Scholar] [CrossRef]
- Almassri, A.M.M.; Hasan, W.Z.W.; Ahmad, S.A.; Shafie, S.; Wada, C.; Horio, K. Self-calibration algorithm for a pressure sensor with a real-time approach based on an artificial neural network. Sensors 2018, 18, 2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafie, S.; Kawahito, S.; Halin, I.A.; Hasan, W.Z.W. Non-linearity in wide dynamic range CMOS image sensors utilizing a partial charge transfer technique. Sensors 2009, 9, 9452–9467. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tong, K.Y.; Song, R.; Tsang, V.S.; Leung, P.O.; Li, L. Variation of Muscle Coactivation Patterns in Chronic Stroke During Robot-Assisted Elbow Training. Arch. Phys. Med. Rehabil. 2007, 88, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Feleke, A.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [Google Scholar] [CrossRef]
- Huang, Y.; Su, S.W.; Song, R. Voluntary Intention-Driven Rehabilitation Robots for the Upper Limb; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128149423. [Google Scholar]
- Kumar, D.K.; Jelfs, B.; Sui, X.; Arjunan, S.P. Prosthetic hand control: A multidisciplinary review to identify strengths, shortcomings, and the future. Biomed. Signal Process. Control 2019, 53, 101588. [Google Scholar] [CrossRef]
Characteristics | Targeted Patient | Therapy Procedure | Limitations | |
---|---|---|---|---|
Type of Treatment | ||||
Passive Therapy | hemiplegia patient | Flexing and extending the impaired limb | Beneficial for upper limb extremities | |
Active-assistive Therapy | Patient with some degree of moving ability | A force is provided to help the patient complete a task | Beneficial for shoulder and elbow exercises | |
Active-resistive Therapy | A force is applied against the desired movement | Beneficial for treating impaired arms | ||
Bilateral Therapy | Patient has one functional limb | Impaired limb copies the trajectory of the functional limb | Beneficial for upper limb extremities |
Source | Therapy Type | Post-Stroke Time | No. of Subjects | No. of Sessions | Improvements |
---|---|---|---|---|---|
[15] | Passive | <6 months | 3 | 1 session 40 min | Reducing the spasm and the stiffness of the impaired limb |
[9] | Active-Assistive | >6 months | 8 | 18 sessions 6 weeks 1 h/workday | Results showed an improvement in the impaired joints |
[19] | Active-Resistive | >6 months | 8 | 18 sessions 6 weeks 1 h/workday | Results showed an improvement in the long-term strength |
[23] | Bilateral | <6 months | 14 | 31 sessions 8 weeks 1 h/workday | Results showed an improvement of the impaired hemisphere and motor functions |
Characteristics | Targeted Impaired Functions | Number of DOF Provided | Therapy Classification | Security Precautions | |
---|---|---|---|---|---|
Type of Robot | |||||
MIT-MANUS | Upper limb rehabilitation | Five DOF | Passive |
| |
MIME | Upper limb rehabilitation (Shoulder and Elbow) | Six DOF | Passive Active Bilateral |
| |
ARM Guide | Upper limb function | One DOF | Passive Active | One DOF that provides linear constraints. | |
ARMin | Upper limb rehabilitation | Seven DOF | Passive |
| |
CADEN-7 | Upper limb rehabilitation | Seven DOF | Passive Active | Three levels of safety: mechanical, electrical and software. | |
L-EXOS | Upper limb rehabilitation | Five DOF | Active |
| |
T-Wrex | Upper limb rehabilitation | Five DOF | Active | Positions sensors and custom grip sensors | |
REHAROB | Upper limb rehabilitation (Shoulder and Elbow) | Three DOF | Passive | Sensors to control and monitor the generated forces. | |
BONES | Upper limb rehabilitation | Four DOF | Active | One extra actuator is added for safety issues. |
Source | Type of Exoskeleton | Input Parameters | Controlling Technique | Characteristics |
---|---|---|---|---|
[60,61] | Hand Exoskeleton | EMG signal | Blind source separation | Adding further degrees of freedom requires adding more sensors |
[62,63] | Hand Exoskeleton | EMG signal |
|
|
[64] | Upper limb Exoskeleton | EMG signal and force signal | Neuro-fuzzy controlling | Mean absolute value (MAV) is used as a controlling feature. |
[65] | SUEFUL-7 exoskeleton | Combination of EMG signal and force signal. | Muscle model oriented based on neuro-fuzzy | Impedance control is modified in real time according to the extracted EMG signal and limb posture. |
[66] | NEUROExos | EMG signal | proportional control method | Two EMG signals are extracted from the biceps and triceps to provide better control. |
[55] | Elbow exoskeleton | EMG signal | Artificial Neural Network (ANN) | Seven EMG signals are extracted from seven muscles. |
[67] | Upper limb Exoskeleton | EMG signal | Genetic algorithm (GA) |
|
Source | Robot | Therapy Type | Post-Stroke Time | No. of Subjects | No. of Sessions | Improvements |
---|---|---|---|---|---|---|
[20] | MIT-MANUS | Assistive | <6 months | 96 | 25 sessions 5 weeks 1 h/workday | motor power of the shoulder and the elbow was significantly improved |
[38] | MIME | Assistive | >6 months | 27 | 24 sessions 8 weeks 1 h/workday | the reach ability and the proximal arm strength were largely improved |
[41] | ARM Guide | Assistive | >6 months | 3 | 24 sessions 8 weeks 1 h/workday | motion velocity and range of motion were greatly improved |
[29] | ARMin | Passive | >6 months | 3 | 40 sessions 8 weeks 1 h/workday | significant improvement in muscle strength, arm motion and other functional tasks |
[40] | CADEN-7 | Passive-Assistive | - | - | - | Unverified No clinical study was carried out on CADEN-7 |
[48] | L-EXOS | Passive-Assistive | >6 months | 9 | 18 sessions 6 weeks 1 h/workday | Results showed a relative improvement in three tasks: reaching task, motion task and object manipulating |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qassim, H.M.; Wan Hasan, W.Z. A Review on Upper Limb Rehabilitation Robots. Appl. Sci. 2020, 10, 6976. https://doi.org/10.3390/app10196976
Qassim HM, Wan Hasan WZ. A Review on Upper Limb Rehabilitation Robots. Applied Sciences. 2020; 10(19):6976. https://doi.org/10.3390/app10196976
Chicago/Turabian StyleQassim, Hassan M., and W. Z. Wan Hasan. 2020. "A Review on Upper Limb Rehabilitation Robots" Applied Sciences 10, no. 19: 6976. https://doi.org/10.3390/app10196976
APA StyleQassim, H. M., & Wan Hasan, W. Z. (2020). A Review on Upper Limb Rehabilitation Robots. Applied Sciences, 10(19), 6976. https://doi.org/10.3390/app10196976