The Circadian Effect Versus Mesopic Vision Effect in Road Lighting Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. S/P Ratio
2.3. Equivalent Melanopic Lux
2.4. Circadian Light and Circadian Stimulus
2.5. Analysis Method
3. Results
3.1. EML as a Function of the CCT and S/P Ratio
3.2. CLA and CS as a Function of the CCT and S/P Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schnapf, J.L.; Baylor, D.A. How photoreceptor cells respond to light. Sci. Am. 1987, 256, 40–47. [Google Scholar] [CrossRef]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2001, 535, 261–267. [Google Scholar]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef] [Green Version]
- Rea, M.S.; Figueiro, M.G.; Bierman, A.; Bullough, J.D. Circadian light. J. Circadian Rhythms. 2010, 8, 2. [Google Scholar]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; Hagan, J.B.O.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar]
- Glickman, G.; Levin, R.; Brainard, G.C. Ocular input for human melatonin regulation: Relevance to breast cancer. Neuroendocrinol. Lett. 2002, 23, 17–22. [Google Scholar]
- Yao, Q.; Wang, H.B.; Uttley, J.; Zhuang, X.B. Illuminance reconstruction of road lighting in urban areas for efficient and healthy lighting performance evaluation. Appl. Sci. 2018, 8, 9. [Google Scholar]
- Schreuder, D. Introduction: The function of outdoor lighting. In Outdoor Lighting: Physics, Vision and Perception; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Fotios, S.; Gibbons, R. Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Light. Res. Technol. 2018, 50, 154–186. [Google Scholar]
- CIE 191:2010. Recommended System for Mesopic Photometry Based on Visual Performance; CIE Central Bureau Kegelgasse: Vienna, Austria, 2010. [Google Scholar]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar]
- Pan, Y.F.; Zhang, X.F.; Tian, J.; Jin, X.; Luo, L.; Yang, K. Mapping asphalt pavement aging and condition using multiple endmember spectral mixture analysis in Beijing, China. J. Appl. Remote Sens. 2017, 11, 016003. [Google Scholar]
- Barlow, H.B. Purkinje shift and retinal noise. Nature 1957, 179, 255–256. [Google Scholar]
- Li, H.C.; Sun, P.L.; Huang, Y.N.; Luo, M.R. Spectral Optimization of White LED based on Mesopic Luminance and Color Gamut Volume for Dim Lighting Conditions. Appl. Sci. 2020, 10, 3579. [Google Scholar] [CrossRef]
- Zan, L.; Lin, D.; Zhong, P.; He, G. Optimal spectra of white LED integrated with quantum dots for mesopic vision. Opt. Express 2016, 24, 7643–7653. [Google Scholar]
- Xiao, L.C.; Zhang, C.W.; Zhong, P.; He, G.X. Spectral optimization of phosphor-coated white LED for road lighting based on the mesopic limited luminous efficacy and IES color fidelity index. Appl. Opt. 2018, 57, 931–936. [Google Scholar]
- Gibbons, R.B.; Terry, T.; Bhagavathula, R.; Meyer, J.; Lewis, A. Applicability of mesopic factors to the driving task. Light. Res. Technol. 2016, 48, 70–82. [Google Scholar]
- Panda, S.; Nayak, S.K.; Campo, B.; Walker, J.R.; Hogenesch, J.B.; Jegla, T. Illumination of the melanopsin signaling pathway. Science 2005, 307, 600–604.
- Qiu, X.D.; Kumbalasiri, T.; Carlson, S.M.; Wong, K.Y.; Krishna, V.; Provencio, I.; Berson, D.M. Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005, 433, 745–749. [Google Scholar]
- Koyanagi, M.; Kubokawa, K.; Tsukamoto, H.; Shichida, Y.; Terakita, A. Cephalochordate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 2005, 15, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Torii, M.; Kojima, D.; Okano, T.; Nakamura, A.; Terakita, A.; Shichida, Y.; Wada, A.; Fukada, Y. Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Lett. 2007, 581, 5327–5331. [Google Scholar]
- Bailes, H.J.; Lucas, R.J. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades. Proc. Biol. Sci. 2013, 280, 20122987. [Google Scholar]
- Arendt, J. Melatonin and the pineal gland: Influence on mammalian seasonal and circadian physiology. Rev. Reprod. 1998, 3, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J. Pineal gland: Interface between the photoperiodic environment and the endocrine system. Trends Endocrinol. Metab. 1991, 2, 13–19. [Google Scholar]
- Wetterberg, L. Light and Biological Rhythms in Man; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Circadian Lighting Design | WELL Standard. Available online: https://standard.wellcertified.com/light/circadian-lighting-design (accessed on 2 August 2020).
- Rea, M.; Figueiro, M.; Bierman, A.; Hamner, R. Modelling the spectral sensitivity of the human circadian system. Light. Res. Technol. 2012, 44, 386–396. [Google Scholar]
- Rea, M.S.; Figueiro, M.G. Light as a circadian stimulus for architectural lighting. Light. Res. Technol. 2018, 50, 497–510. [Google Scholar]
- Figueiro, M.G.; Rea, M.S. Office lighting and personal light exposures in two seasons: Impact on sleep and mood. Light. Res. Technol. 2016, 48, 352–364. [Google Scholar]
- Acosta, I.; Leslie, R.P.; Figueiro, M.G. Analysis of circadian stimulus allowed by daylighting in hospital rooms. Light. Res. Technol. 2017, 49, 49–61. [Google Scholar]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar]
- Dai, Q.; Cai, W.; Shi, W.; Hao, L.; Wei, M. A proposed lighting-design space: Circadian effect versus visual illuminance. Build. Environ. 2017, 122, 287–293. [Google Scholar] [CrossRef]
- Dai, Q.; Cai, W.; Hao, L.; Shi, W.; Wang, Z. Spectral optimisation and a novel lighting-design space based on circadian stimulus. Light. Res. Technol. 2018, 50, 1198–1211. [Google Scholar]
- Dai, Q.; Shan, Q.F.; Lam, H.; Hao, L.; Lin, Y.; Cui, Z. Circadian-Effect engineering of solid-state lighting spectra for beneficial and tunable lighting. Opt. Express 2016, 24, 20049–20058. [Google Scholar]
- Lewy, A.J.; Wehr, T.A.; Goodwin, F.K.; Newsome, D.A.; Markey, P. Light suppresses melatonin secretion in humans. Science 1980, 210, 1267–1269. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.P., Jr.; Hughes, R.J.; Kronauer, R.E.; Dijk, D.J.; Czeisler, C.A. Intrinsicnear-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc. Natl. Acad. Sci. USA 2001, 98, 14027–14032. [Google Scholar]
- Phillips, A.J.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar]
- Rea, M.S.; Radetsky, L.C.; Bullough, J.D. Toward a model of outdoor lighting scene brightness. Light. Res. Technol. 2011, 43, 7–30. [Google Scholar]
- Besenecker, U.C.; Bullough, J.D. Investigating visual mechanisms underlying scene brightness. Light. Res. Technol. 2017, 49, 16–32. [Google Scholar]
- Brown, T.M.; Tsujimura, S.I.; Allen, A.E.; Wynne, J.; Bedford, R.; Vickery, G.; Vugler, A.; Lucas, R.J. Melanopsin-based brightness discrimination in mice and humans. Curr. Biol. 2012, 22, 1134–1141. [Google Scholar] [PubMed] [Green Version]
- Falchi, F.; Cinzano, P.; Elvidge, C.D. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 2011, 92, 2714–2722. [Google Scholar]
- Hollan, J. Metabolism-Influencing light: Measurement by digital cameras. In Proceedings of the Cancer and Rhythm, Graz, Austria, 14–16 October 2004. [Google Scholar]
- Illuminating Engineering Society. IES Method for Evaluating Light Source Colour Rendition; IES: New York, NY, USA, 2015; pp. 15–30. [Google Scholar]
- Rea, M.; Smith, A.; Bierman, A.; Figueiro, M.G. The Potential of Outdoor Lighting for Stimulating the Human Circadian System; Technical Report; Alliance for Solid-State Illumination Systems and Technologies (ASSIST): Troy, NY, USA, 2010. [Google Scholar]
- Bullough, J.D.; Radetsky, L.C.; Besenecker, U.C.; Rea, M.S. Influence of Spectral Power Distribution on Scene Brightness at Different Light Levels. LEUKOS 2014, 10, 3–9. [Google Scholar]
HPS | LED 1 | LED 2 | ||
---|---|---|---|---|
CCT (K) | 2238 | 2497 | 6060 | |
S/P ratio | 0.8417 | 1.1642 | 2.0711 | |
EML | 1 lx | 0.2807 | 0.4453 | 0.8781 |
3 lx | 0.8421 | 1.3358 | 2.6342 | |
10 lx | 2.8069 | 4.4527 | 8.7808 | |
30 lx | 8.4206 | 13.3580 | 26.3424 | |
100 lx | 28.0687 | 44.5265 | 87.8080 | |
CLA | 1 lx | 0.5196 | 0.8330 | 1.1096 |
3 lx | 1.5588 | 2.4989 | 3.3293 | |
10 lx | 5.1959 | 8.3298 | 11.1040 | |
30 lx | 15.5878 | 24.9893 | 33.3659 | |
100 lx | 51.9594 | 83.2978 | 111.8434 | |
CS | 1 lx | 0.0005 | 0.0009 | 0.0012 |
3 lx | 0.0018 | 0.0029 | 0.0040 | |
10 lx | 0.0066 | 0.0110 | 0.0150 | |
30 lx | 0.0216 | 0.0355 | 0.0480 | |
100 lx | 0.0750 | 0.1175 | 0.1528 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wu, P.; Ding, J.; Yao, Q.; Ju, J. The Circadian Effect Versus Mesopic Vision Effect in Road Lighting Applications. Appl. Sci. 2020, 10, 6975. https://doi.org/10.3390/app10196975
Li M, Wu P, Ding J, Yao Q, Ju J. The Circadian Effect Versus Mesopic Vision Effect in Road Lighting Applications. Applied Sciences. 2020; 10(19):6975. https://doi.org/10.3390/app10196975
Chicago/Turabian StyleLi, Min, Peiyu Wu, Jianhua Ding, Qi Yao, and Jiaqi Ju. 2020. "The Circadian Effect Versus Mesopic Vision Effect in Road Lighting Applications" Applied Sciences 10, no. 19: 6975. https://doi.org/10.3390/app10196975
APA StyleLi, M., Wu, P., Ding, J., Yao, Q., & Ju, J. (2020). The Circadian Effect Versus Mesopic Vision Effect in Road Lighting Applications. Applied Sciences, 10(19), 6975. https://doi.org/10.3390/app10196975