Electrochemical (Bio)Sensing of Maple Syrup Urine Disease Biomarkers Pointing to Early Diagnosis: A Review
Abstract
:1. Introduction
2. Maple Syrup Urine Disease
3. Conventional Detection Methods of Amino Acids
4. Electrochemical bAA Sensors and Biosensors
4.1. Metal Nanoparticles and b AA Electrochemical (Bio)Sensing
4.2. Enzymatic Aproaches and b AA Electrochemical Biosensing
4.3. Conducting Polymers and b AA Electrochemical (Bio)Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Meister, A. Intermediary metabolism of the amino acids. Biochem. Amino Acids 1965, 593–1020. [Google Scholar] [CrossRef]
- Marchelli, R. The potential of enantioselective analysis as a quality control tool. Trends Food Sci. Technol. 1996, 7, 113–119. [Google Scholar] [CrossRef]
- Kwan, R.C.; Hon, P.Y.; Renneberg, R. Amperometric biosensor for rapid determination of alanine. Anal. Chim. Acta 2004, 523, 81–88. [Google Scholar] [CrossRef]
- Khoronenkova, S.V.; Tishkov, V.I. D-Amino acid oxidase: Physiological role and applications. Biochemistry 2008, 73, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Origin, microbiology, nutrition, and pharmacology of D-amino acids. Chem. Biodivers. 2010, 7, 1491–1530. [Google Scholar] [CrossRef]
- Kasai, H.; Fukuda, M.; Watanabe, S.; Hayashi-Takagi, A.; Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 2010, 33, 121–129. [Google Scholar] [CrossRef]
- Kawazoe, T.; Tsuge, H.; Pilone, M.S.; Fukui, K. Crystal structure of human Damino acid oxidase: Context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci. 2006, 15, 2708–2717. [Google Scholar] [CrossRef] [Green Version]
- Bruckner, H.; Hausch, M. D-amino acids in dairy products: Detection, origin and nutritional aspects. I. Milk, fermented milk, fresh cheese and acid curd cheese. Milchwissenschaft 1990, 45, 357–360. [Google Scholar]
- Bruckner, H.; Schieber, A. Determination of free D-amino acids in mammalian by chiral gas chromatography–mass spectrometry. J. High Resol. Chromatogr. 2000, 23, 576–582. [Google Scholar] [CrossRef]
- Pavan, S.; Rommel, K.; Marquina, M.E.M.; Hohn, S.; Lanneau, V.; Rath, A. Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS ONE 2017, 12, e0170365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piras, D.; Locci, E.; Palmas, F.; Ferino, G.; Fanos, V.; Noto, A.; D’aloja, E.; Finco, G. Rare disease: A focus on metabolomics. Expert Opin. Orphan Drugs 2016, 4, 1229–1237. [Google Scholar] [CrossRef]
- Jumbo-Lucioni, P.P.; Garber, K.; Kiel, J.; Baric, I.; Berry, G.T.; Bosch, A.; Burlina, A.; Chiesa, A.; Pico, M.L.C.; Estrada, S.C.; et al. Diversity of approaches to classic galactosemia around the world: A comparison of diagnosis, intervention, and outcomes. J. Inherit. Metab. Dis. 2012, 35, 1037–1049. [Google Scholar] [CrossRef]
- Burrage, L.C.; Nagamani, S.C.; Campeau, P.M.; Lee, B.H. Branched-chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 2014, 23, R1–R8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, C.R. The genetic tyrosinemias. Am. J. Med. Genet. Part C Semin. Med. Genet. 2006, 142C, 121–126. [Google Scholar] [CrossRef] [PubMed]
- García-Cazorla, A.; Wolf, N.; Serrano, M.; Moog, U.; Perez-Duenas, B.; Poo, P.; Pineda, M.; Campistol, J.; Hoffmann, G. Mental retardation and inborn errors of metabolism. J. Inherit. Metab. Dis. 2009, 32, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Harms, E.; Olgemöller, B. Neonatal Screening for Metabolic and Endocrine Disorders. Dtsch. Arztebl. Int. 2011, 108, 11–22. [Google Scholar] [CrossRef]
- Fujimoto, A.; Okano, Y.; Miyagi, T.; Isshiki, G.; Oura, T. Quantitative Beutler Test for Newborn Mass Screening of Galactosemia Using a Fluorometric Microplate Reader T. Clin. Chem. 2000, 46, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avilov, V.; Zeng, Q.; Shippy, S.A. Threads for tear film collection and support in quantitative amino acid analysis. Anal. Bioanal. Chem. 2016, 408, 5309–5317. [Google Scholar] [CrossRef]
- Borowczyk, K.; Chwatko, G.; Kubalczyk, P.; Jakubowski, H.; Kubalska, J.; Glowacki, R. Simultaneous determination of methionine and homocysteine by on-column derivatization with o-phtaldialdehyde. Talanta 2016, 161, 917–924. [Google Scholar] [CrossRef]
- Azuma, K.; Hirao, Y.; Hayakawa, Y.; Murahata, Y.; Osaki, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Ito, N. Application of pre-column labeling liquid chromatography for canine plasma-free amino acid analysis. Metabolites 2016, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.; Yoon, H.; Hong, S. Development of a new diagnostic method for galactosemia by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 2007, 1140, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, A.; Romero, L.M.; Castells, C.B. Analysis of citrulline and metabolic related amino acids in plasma by derivatization and RPLC. Application of the extrapolative internal standard calibration method. Microchem. J. 2016, 129, 29–35. [Google Scholar] [CrossRef]
- Castellanos, M.; van Eendenburg, C.V.; Gubern, C.; Sanchez, J.M. Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. J. Chromatogr. B 2016, 1029, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Tuma, P.; Gojda, J. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015, 36, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, S.; Ulusoy, H.I.; Pleissner, D.; Eriksen, N.T. Nitrosation and analysis of amino acid derivatives by isocratic HPLC. RSC Adv. 2016, 6, 13120–13128. [Google Scholar] [CrossRef] [Green Version]
- Blau, N.; Shen, N.; Carducci, C. Molecular genetics and diagnosis of phenylketonuria: State of the art. Expert Rev. Mol. Diagn. 2014, 14, 655–671. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed Point-of-Care Testing—xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Luppa, P.B.; Bietenbeck, A.; Beaudoin, C.; Giannetti, A. Clinically relevant analytical techniques, organizational concepts for application and future perspectives of point-of-care testing. Biotechnol. Adv. 2016, 34, 139–160. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, S.; Carvalho, W.S.P.; Jiang, Y.; Serpe, M.J. Portable point-of-care diagnostic devices. Anal. Methods 2016, 8, 7847–7867. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Li, C.; Feng, S.; Chen, S.-M.; Ding, Y.; Chen, C.; Hao, Q.; Yang, T.-H.; Lei, W. A novel electrochemical sensor for uric acid detection based on PCN/MWCNT. Ionics 2019, 25, 4437–4445. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, L.; Chen, G. Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sens. Actuators B Chem. 2014, 192, 459–466. [Google Scholar] [CrossRef]
- Sandlers, Y. The future perspective: Metabolomics in laboratory medicine for inborn errors of metabolism. Trans. Res. 2017, 189, 65–75. [Google Scholar] [CrossRef] [Green Version]
- García-Carmona, L.; González, M.C.; Escarpa, A. Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. TrAC Trends Anal. Chem. 2019, 118, 29–42. [Google Scholar] [CrossRef]
- Blackburn, P.R.; Gass, J.M.; Vairo, F.P.E.; Farnham, K.M.; Atwal, H.K.; Macklin, S.; Klee, E.W.; Atwal, P.S. Maple syrup urine disease: Mechanisms and management. Appl. Clin. Genet. 2017, 10, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, C.H.; Lynch, C.J.; Vary, T.C. BCATm deficiency ameliorates endotoxin-induced decrease in muscle protein synthesis and improves survival in septic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R935–R944. [Google Scholar] [CrossRef] [Green Version]
- Yudkoff, M.; Daikhin, Y.; Nissim, I.; Horyn, O.; Luhovyy, B.; Lazarow, A. Brain amino acid requirements and toxicity: The example of leucine. J. Nutr. 2005, 135, 1531S–1538S. [Google Scholar] [CrossRef]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.T.; Brosnan, M.E. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 2006, 136, 207S–211S. [Google Scholar] [CrossRef]
- Harper, A.E.; Miller, R.H.; Block, K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984, 4, 409–454. [Google Scholar] [CrossRef]
- Vogel, K.R.; Arning, E.; Wasek, B.L.; McPherson, S.; Bottiglieri, T.; Gibson, K.M. Brain-blood amino acid correlates following protein restriction in murine maple syrup urine disease. Orphanet J. Rare Dis. 2014, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinnanti, W.J.; Lazovic, J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J. Inherit. Metab. Dis. 2012, 35, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Takatsuki, K.; Isokawa, M.; Sekiguchi, T.; Mizuno, J.; Funatsu, T.; Shoji, S.; Tsunoda, M. Fast and quantitative analysis of branched-chain amino acids in biological samples using a pillar array column. Anal. Bioanal. Chem. 2013, 405, 7993–7999. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Attri, S.V.; Behra, B.; Bhisikar, S.; Kumar, P.; Tageja, M.; Sharda, S.; Singhi, P.; Singhi, S. Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory. Amino Acids 2014, 46, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, M.P.; Navarrete, A.; Balderas, C.; Garcia, A. Optimization and validation of a CE-LIF method for amino acid determination in biological samples. J. Pharm. Biomed. Anal. 2013, 73, 116–124. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Calderon-Santiago, M.; Priego-Capote, F.; Luque de Castro, M.D. Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography-tandem mass spectrometry. Talanta 2016, 146, 310–317. [Google Scholar] [CrossRef]
- Yin, B.; Li, T.; Zhang, S.; Li, Z.; He, P. Sensitive analysis of 33 free amino acids in serum, milk, and muscle by ultra-high-performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Anal. Methods 2016, 9, 2814–2823. [Google Scholar] [CrossRef]
- Tuma, P.; Sustkova-Fiserova, M.; Opekar, F.; Pavlicek, V.; Malkova, K. Large-volume sample stacking for in vivo monitoring of trace levels of gamma-aminobutyric acid, glycine and glutamate in micro dialysates of periaqueductal gray matter by capillary electrophoresis with contactless conductivity detection. J. Chromatogr. A 2013, 1303, 94–99. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Y.; Yang, R.; Li, J.; Qu, L. A highly sensitive and selective electrochemical sensor based on polydopamine functionalized graphene and molecularly imprinted polymer for the 2,4-dichlorophenol recognition and detection. Talanta 2019, 195, 691–698. [Google Scholar] [CrossRef]
- Ciriello, R.; De Gennaro, F.; Frascaro, S.; Guerrieri, A. A novel approach for the selective analysis of L-lysine in untreated human serum by a co-crosslinked L-lysine–α-oxidase/overoxidized polypyrrole bilayer based amperometric biosensor. Bioelectrochemistry 2018, 124, 47–56. [Google Scholar] [CrossRef]
- Anibal, C.V.D.; Odena, M.; Ruisáncheza, I.; Callao, M.P. Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and multivariate classification techniques. Talanta 2009, 79, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Zainudin, N.S.; Yaacob, M.H.; Md Muslim, N.Z.; Othman, Z. Voltammetric determination of reactive black 5 (RB5) in waste water samples from the Batik industry. Mal. J. Anal. Sci. 2016, 20, 1254–1268. [Google Scholar]
- Jäntschi, L.; Nașcu, H.-I. Chapter 4-Metode electrochimice. In Chimie Analitică şi Instrumentală; Academic Press & Academic Direct: Cluj-Napoca, Romania, 2009; pp. 47–67. [Google Scholar]
- Narayan, R.J. Part One-Fundamentals of medical biosensors for POC applications. In Medical Biosensors for Point of Care (POC) Applications; Woodhead Publishing: Sawston, UK, 2016; pp. 27–42. [Google Scholar]
- Apetrei, I.; Apetrei, C. A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 2018, 114, 37–43. [Google Scholar] [CrossRef]
- Settle, F.A. Chapter 37-Voltammetric Techniques. In Handbook of Instrumental Techniques for Analytical Chemistry; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1997; pp. 709–725. [Google Scholar]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Marsili, E.; Baron, D.B.; Shikhare, I.D.; Coursolle, D.; Gralnick, J.A.; Bond, D.R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, M.; Shadjou, N.; Omidinia, E. Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids. Colloids Surf. B Biointerfaces 2013, 108, 52–59. [Google Scholar] [CrossRef]
- Saghatforoush, L.; Hasanzadeh, M.; Shadjou, N.; Khalilzadeh, B. Deposition of new thia-containing Schiff-base iron (III) complexes onto carbon nanotube modified glassy carbon electrodes as a biosensor for electrooxidation and determination of amino acids. Electrochim. Acta 2011, 56, 1051–1061. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Karim-Nezhad, G.; Shadjou, N.; Hajjizadeh, M.; Khalilzadeh, B.; Saghatforoush, L.; Abnosi, M.H.; Babaei, A.; Ershad, S. Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids. Anal. Biochem. 2009, 389, 130–137. [Google Scholar] [CrossRef]
- Hussain, M.M.; Rahman, M.M.; Asir, A.M. Sensitive L-leucine sensor based on a glassy carbon electrode modified with SrO nanorods. Microchim Acta 2016, 183, 3265–3273. [Google Scholar] [CrossRef]
- Rezaei, B.; Zare, Z.M. Modified Glassy Carbon Electrode with Multiwall Carbon Nanotubes as a Voltammetric Sensor for Determination of Leucine in Biological and Pharmaceutical Samples. Anal. Let. 2008, 41, 2267–2286. [Google Scholar] [CrossRef]
- Yang, D.X.; Zhu, L.D.; Jiang, X.Y. Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 2010, 640, 17–22. [Google Scholar] [CrossRef]
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D. Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing oftryptophan. Biosen. Bioelectr. 2013, 42, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nat. Cell Biol. 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Lai, G.; Zhang, H.; Yong, J.; Yu, A. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosen. Bioelectr. 2013, 47, 178–183. [Google Scholar] [CrossRef]
- García-Barrasa, J.; López-De-Luzuriaga, J.M.; Monge, M. Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Cent. Eur. J. Chem. 2011, 9, 7–19. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef]
- Singha, S.; Saikia, J.P.; Buragohaina, A.K. A novel ‘green’ synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids Surf. B Biointerfaces 2013, 102, 83–85. [Google Scholar] [CrossRef]
- Gargi, D.; Dipankar, H.; Atanu, M. Synthesis of Gold Colloid using Zingiber officinale: Catalytic Study. NanoMatChemBioDev 2018, 1, 24–29. [Google Scholar]
- Pulit, J.; Banach, M. Preparation of nanocrystalline silver using gelatin and glucose as stabilizing and reducing agents, respectively. Dig. J. Nanomater. Biostruct. 2013, 8, 787–795. [Google Scholar]
- Prabakaran, E.; Pandian, K. Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem. 2015, 166, 198–205. [Google Scholar] [CrossRef]
- Liu, X.; Luo, L.; Ding, Y.; Kang, Z.; Ye, D. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry 2012, 86, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, E.; Sheela Violet Rani, V.; Brabakaran, A.; Pandian, K.; Jesudurai, D. A Green Approach to the Synthesis of Eriochrome Black-T Capped Silver Nanoparticles and Its Electrochemical Detection of L-Tryptophan and L-Tyrosine in Blood Sample and Antibacterial Activity. J. Adv. Electrochem. 2016, 2, 78–84. [Google Scholar]
- Karastogianni, S.; Girousi, S. A novel electrochemical bioimprinted sensor for butyl paraben on a modified carbon paste electrode with safranine-O capped with silver nanoparticles. Int. J. Cur. Res. 2017, 9, 61118–61124. [Google Scholar]
- García-Carmona, L.; González, M.C.; Escarpa, A. Electrochemical On-site Amino Acids Detection of Maple Syrup Urine Disease Using Vertically Aligned Nickel Nanowires. Electroanalysis 2018, 30, 1505–1510. [Google Scholar] [CrossRef]
- Tooley, C.A.; Gasperoni, C.H.; Marnoto, S.; Halpern, J.M. Evaluation of Metal Oxide Surface Catalysts for the Electrochemical Activation of Amino Acids. Sensors 2018, 18, 3144. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- García-Carmona, L.; González, M.C.; Escarpa, A. On-line coupling of millimeter size motors and chronoamperometry for real time bio-sensing of branched-chain amino acids in maple syrup urine disease clinical samples. Sens. Actuators B Chem. 2019, 281, 239–244. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.-I.; Muvhulawa, L.S. Determination of L- and D-Enantiomers of Leucine Using Amperometric Biosensors Based on Diamond Paste. Instr. Sci. Technol. 2006, 34, 475–481. [Google Scholar] [CrossRef]
- Labroo, P.; Cui, Y. Amperometric bienzyme screen-printed biosensor for the determination of leucine. Anal. Bioanal. Chem. 2014, 406, 367–372. [Google Scholar] [CrossRef]
- Domınguez, R.; Serra, B.; Reviejo, A.; Pingarron, J. Chiral analysis of amino acids using electrochemical composite bienzyme biosensors. Anal. Biochem. 2001, 298, 275–282. [Google Scholar]
- Cosnier, S.; Lepellec, A. Biosensors based on electropolymerized films: New trends. Anal. Bioanal. Chem. 2003, 377, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Garnier, F. Functionalized Conducting Polymers—Towards Intelligent Materials. Angew. Chem. 1989, 101, 529–533. [Google Scholar] [CrossRef]
- Luo, J.; Fan, C.; Wang, X.; Liu, R.; Liu, X. A novel electrochemical sensor for paracetamol based on molecularly imprinted polymeric micelles. Sens. Act. B Chem. 2013, 188, 909–916. [Google Scholar] [CrossRef]
- Kan, X.; Zhou, H.; Li, C.; Zhu, A.; Xing, Z.; Zhao, Z. Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim. Acta 2012, 63, 69–75. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Apetrei, I.-M.; Apetrei, C. Application of voltammetric e-tongue for the detection of ammonia and putrescine in beef products. Sens. Actuators B Chem. 2016, 234, 371–379. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Li, J.; Xue, Z.; Wu, B.; Lu, X. Acetylsalicylic acid electrochemical sensor based on PATP–AuNPs modified molecularly imprinted polymer film. Talanta 2011, 85, 1672–1679. [Google Scholar] [CrossRef]
- Bi, Q.; Dong, S.; Sun, Y.; Lu, X.; Zhao, L. An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids. Anal. Biochem. 2016, 508, 50–57. [Google Scholar] [CrossRef]
- Ríos, A.; Zougagh, M.; Avila, M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal. Chim. Acta 2012, 740, 1–11. [Google Scholar] [CrossRef]
- Batalla, P.; Martín, A.; López, M.A.; González, M.C.; Escarpa, A. Enzyme-based microfluidic chip coupled to graphene electrodes for the detection of D-amino acid enantiomer-biomarkers. Anal. Chem. 2015, 87, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
Electrode | Analyte | Linear Range | LOD | Ref |
---|---|---|---|---|
MCM-41-Fe2O3/GCE | Valine | 97–176 nM | 94 nM | [59] |
Fe (III)–Schiff base complex on GCE/MWCNTs | Valine | 25–1000 μM | 1.67 μM | [60] |
SrO NR/GCE | L-Leukine | 0.1–0.1 mM | 37.5 pM | [62] |
GCE/MWCNTs | Leukine | 9.0 × 10−6–1.5 × 10−3 M | 3 × 10−6 M | [63] |
v-NiNWs | Leukine | 25–700 mM | 8 mM | [77] |
p-hydroxybenzoate hydroxylase and leucine dehydrogenase on a screen-printed electrode | Leukine | 10 and 600 μM | 2 μM | [83] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karastogianni, S.; Girousi, S. Electrochemical (Bio)Sensing of Maple Syrup Urine Disease Biomarkers Pointing to Early Diagnosis: A Review. Appl. Sci. 2020, 10, 7023. https://doi.org/10.3390/app10207023
Karastogianni S, Girousi S. Electrochemical (Bio)Sensing of Maple Syrup Urine Disease Biomarkers Pointing to Early Diagnosis: A Review. Applied Sciences. 2020; 10(20):7023. https://doi.org/10.3390/app10207023
Chicago/Turabian StyleKarastogianni, Sophia, and Stella Girousi. 2020. "Electrochemical (Bio)Sensing of Maple Syrup Urine Disease Biomarkers Pointing to Early Diagnosis: A Review" Applied Sciences 10, no. 20: 7023. https://doi.org/10.3390/app10207023
APA StyleKarastogianni, S., & Girousi, S. (2020). Electrochemical (Bio)Sensing of Maple Syrup Urine Disease Biomarkers Pointing to Early Diagnosis: A Review. Applied Sciences, 10(20), 7023. https://doi.org/10.3390/app10207023