Trunk Posture Adaptations during Sitting on Dynamic Stool: A Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation Procedures
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, M. Non-pharmacological treatment of low back pain in primary care. Drug Ther. Bull. 2019, 57, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.C.; van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaeyen, J.W.S.; Maher, C.G.; Wiech, K.; Van Zundert, J.; Meloto, C.B.; Diatchenko, L.; Battié, M.C.; Goossens, M.; Koes, B.; Linton, S.J. Low back pain. Nat. Rev. Dis. Primers 2018, 4, 52. [Google Scholar] [CrossRef]
- O’Sullivan, K.; McCarthy, R.; White, A.; O’Sullivan, L.; Dankaerts, W. Lumbar posture and trunk muscle activation during a typing task when sitting on a novel dynamic ergonomic chair. Ergonomics 2012, 55, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Czaprowski, D.; Stoliński, L.; Tyrakowski, M.; Kozinoga, M.; Kotwicki, T. Non-structural misalignments of body posture in the sagittal plane. Scoliosis Spinal. Disord. 2018, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Claus, A.P.; Hides, J.A.; Moseley, G.L.; Hodges, P.W. Is ‘ideal’ sitting posture real? Measurement of spinal curves in four sitting postures. Man. Ther. 2009, 14, 404–408. [Google Scholar] [CrossRef]
- O’Sullivan, K.; O’Sullivan, P.; O’Sullivan, L.; Dankaerts, W. What do physiotherapists consider to be the best sitting spinal posture? Man. Ther. 2012, 17, 432–437. [Google Scholar] [CrossRef]
- Korakakis, V.; O’Sullivan, K.; O’Sullivan, P.B.; Evagelinou, V.; Sotiralis, Y.; Sideris, A.; Sakellariou, K.; Karanasios, S.; Giakas, G. Physiotherapist perceptions of optimal sitting and standing posture. Musculoskelet. Sci. Pract. 2019, 39, 24–31. [Google Scholar] [CrossRef]
- Synnott, A.; Dankaerts, W.; Seghers, J.; Purtill, H.; O’Sullivan, K. The effect of a dynamic chair on seated energy expenditure. Ergonomics 2017, 60, 1384–1392. [Google Scholar] [CrossRef]
- Alderighi, M.; Ferrari, R.; Maghini, I.; Del Felice, A.; Masiero, S. Intra and interrater reliability of spinal sagittal curves and mobility using pocket goniometer IncliMed® in healthy subjects. J. Back Musculoskelet. Rehabil. 2016, 29, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.; Ferraro, C.; Poli, P.; Barazzuol, M.; Del Felice, A.; Masiero, S. Goniometric evaluation of the spinal sagittal curves in children and adolescents: A reliability study. J. Back Musculoskelet. Rehabil. 2017, 30, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Negrini, S.; Zenorini, A.; Iosa, M.; Paolucci, S.; Smania, N. Do adolescents with idiopathic scoliosis have body schema disorders? A cross-sectional study. J. Back Musculoskelet. Rehabil. 2016, 29, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ellegast, R.P.; Kraft, K.; Groenesteijn, L.; Krause, F.; Berger, H.; Vink, P. Comparison of four specific dynamic office chairs with a conventional office chair: Impact upon muscle activation, physical activity and posture. Appl. Ergon. 2012, 43, 296–307. [Google Scholar] [CrossRef]
- Koskelo, R.; Vuorikari, K.; Hänninen, O. Sitting and standing postures are corrected by adjustable furniture with lowered muscle tension in high-school students. Ergonomics 2007, 50, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.D.; Swanson, N.G.; Hudock, S.D.; Lotz, W.G. Unstable sitting in the workplace are there physical activity benefits? Am. J. Health Promot. 2015, 29, 207–209. [Google Scholar] [CrossRef] [Green Version]
- van Dieën, J.H.; de Looze, M.P.; Hermans, V. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics 2001, 44, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Wilson, S.E. Trunk posture and spinal stability. Clin. Biomech. (Bristol. Avon.) 2001, 16, 650–659. [Google Scholar] [CrossRef]
- Carter, J.M.; Beam, W.C.; McMahan, S.G.; Barr, M.L.; Brown, L.E. The effects of stability ball training on spinal stability in sedentary individuals. J. Strength Cond. Res. 2006, 20, 429–435. [Google Scholar] [PubMed]
- Gregory, D.E.; Dunk, N.M.; Callaghan, J.P. Stability ball versus office chair: Comparison of muscle activation and lumbar spine posture during prolonged sitting. Hum. Factors 2006, 48, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.W.; De Carvalho, D.E.; Karakolis, T.; Callaghan, J.P. Evaluating abdominal and lower-back muscle activity while performing core exercises on a stability ball and a dynamic office chair. Hum. Factors 2015, 57, 1149–1161. [Google Scholar] [CrossRef]
- Doroff, C.E.; Langford, E.L.; Ryan, G.A.; Snarr, R.L. Effects of active sitting on reading and typing task productivity. Int. J. Exerc. Sci. 2019, 12, 1216–1224. [Google Scholar]
- Nüesch, C.; Kreppke, J.N.; Mündermann, A.; Donath, L. Effects of a dynamic chair on chair seat motion and trunk muscle activity during office tasks and task transitions. Int. J. Environ. Res. Public Health 2018, 15, 2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age (years) mean (SD) | 29.5 (12.1) |
Sex male/female | 41/59 |
Body mass index mean (SD) | 22.0 (2.4) |
Parameters | Mean Data | Post-Hoc Comparisons (Fisher’s LSD Test) | ||||
---|---|---|---|---|---|---|
Standing posture | Conventional sitting posture | Dynamic sitting posture | Standing vs. Conventional sitting p value (95% CI) | Standing vs. Dynamic sitting p value (95% CI) | Conventional vs. Dynamic sitting p value (95% CI) | |
Dorsal kyphosis (°) mean (SD) | 36.5 (6.6) | 52.5 (6.6) | 44.5 (5.2) | <0.001 (−17.7; −14.2) * | <0.001 (−9.7; −6.3) * | <0.001 (6.2; 9.7) * |
Lumbar lordosis (°) mean (SD) | 22.0 (2.4) | 7.0 (28.2) | 16.6 (9.2) | <0.001 (24.1; 29.8) * | <0.001 (14.5; 20.2) * | <0.001(−12.5; −6.8) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picelli, A.; Mazzocco, G.; Smania, N. Trunk Posture Adaptations during Sitting on Dynamic Stool: A Validation Study. Appl. Sci. 2020, 10, 7567. https://doi.org/10.3390/app10217567
Picelli A, Mazzocco G, Smania N. Trunk Posture Adaptations during Sitting on Dynamic Stool: A Validation Study. Applied Sciences. 2020; 10(21):7567. https://doi.org/10.3390/app10217567
Chicago/Turabian StylePicelli, Alessandro, Giuliano Mazzocco, and Nicola Smania. 2020. "Trunk Posture Adaptations during Sitting on Dynamic Stool: A Validation Study" Applied Sciences 10, no. 21: 7567. https://doi.org/10.3390/app10217567
APA StylePicelli, A., Mazzocco, G., & Smania, N. (2020). Trunk Posture Adaptations during Sitting on Dynamic Stool: A Validation Study. Applied Sciences, 10(21), 7567. https://doi.org/10.3390/app10217567