Ghost Imaging by a Proportional Parameter to Filter Bucket Data
Abstract
:1. Introduction
2. Experimental Setup and Principle
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 1995, 52, 3429–3432. [Google Scholar]
- Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 1995, 74, 3600–3603. [Google Scholar] [PubMed]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [PubMed] [Green Version]
- Erkmen, B.; Shapiro, J. Ghost imaging: From quantum to classical to computational. Adv. Opt. Photon. 2010, 2, 405–450. [Google Scholar]
- Padgett, M.J.; Boyd, R.W. An introduction to ghost imaging: Quantum and classical. Philos. Trans. Roy. Soc. A 2017, 375, 20160233. [Google Scholar]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar]
- Pelliccia, D.; Rack, A.; Scheel, M.; Cantelli, V.; Paganin, D.M. Experimental X-ray ghost imaging. Phys. Rev. Lett. 2016, 117, 113902. [Google Scholar]
- Cheng, J.; Lin, J. Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere. Phys. Rev. A 2013, 87, 043810. [Google Scholar]
- Zhang, P.; Gong, W.; Shen, X.; Han, S. Correlated imaging through atmospheric turbulence. Phys. Rev. A 2010, 82, 033817. [Google Scholar]
- Zhang, Y.; Li, W.; Wu, H.; Chen, Y.; Su, X.; Xiao, Y.; Wang, Z.; Gu, Y. High-visibility underwater ghost imaging in low illumination. Opt. Commun. 2019, 44, 45–48. [Google Scholar]
- Erkmen, B. Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A 2012, 29, 782–789. [Google Scholar]
- Gong, W.; Zhao, C.; Yu, H.; Chen, M.; Xu, W.; Han, S. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 2016, 6, 26133. [Google Scholar] [PubMed] [Green Version]
- Moreau, P.A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Ghost imaging using optical correlations. Laser Photonic Rev. 2018, 12, 1700143. [Google Scholar]
- Ferri, F.; Magatti, D.; Lugiato, L.A.; Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [PubMed] [Green Version]
- Sun, B.; Welsh, S.; Edgar, M.; Shapiro, J.; Padgett, M. Normalized ghost imaging. Opt. Express. 2012, 20, 16892–16901. [Google Scholar]
- Zhang, C.; Guo, S.; Cao, J.; Guan, J.; Gao, F. Object reconstitution using pseudo-inverse for ghost imaging. Opt. Express. 2014, 22, 30063–30073. [Google Scholar]
- Gong, W.L. High-resolution pseudo-inverse ghost imaging. Photonic Res. 2015, 3, 234–237. [Google Scholar]
- Yang, C.; Wang, C.; Guan, J.; Zhang, C.; Guo, S.; Gong, W.; Gao, F. Scalar-matrix-structured ghost imaging. Photon. Res. 2016, 4, 281–285. [Google Scholar]
- Lv, X.; Guo, S.; Wang, C.; Yang, C.; Zhang, H.; Song, J.; Gong, W.; Gao, F. Experimental investigation of iterative pseudoinverse ghost imaging. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar]
- Katz, O.; Bromberg, Y.; Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 2009, 95, 131110. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhou, C.; Tian, T.; Liu, D.; Song, L. High-quality compressive ghost imaging. Opt. Commun. 2018, 412, 60–65. [Google Scholar] [CrossRef]
- Yue, C.; Chen, P.; Lv, X.; Wang, C.; Guo, S.; Song, J.; Gong, W.; Gao, F. Object Reconstruction Using the Binomial Theorem for Ghost Imaging. IEEE Photonics J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Luo, K.; Huang, B.; Zheng, W.; Wu, L. Nonlocal imaging by conditional averaging of random reference measurements. Chin. Phys. Lett. 2012, 29, 074216. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Li, M.; Wu, L. Nonlocal imaging of a reflective object using positive and negative correlations. Appl. Opt. 2015, 54, 7494–7499. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Y.; Liu, X.; Yao, X.; Luo, K.; Fan, H.; Wu, L. A double-threshold technique for fast time-correspondence imaging. Appl. Phys. Lett. 2013, 103, 211119. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.H. Computational ghost imaging. Phys. Rev. A 2008, 78, 061802. [Google Scholar] [CrossRef]
- Bian, L.; Suo, J.; Dai, Q.; Chen, F. Experimental comparison of single-pixel imaging algorithms. J. Opt. Soc. Am. A 2018, 35, 78–87. [Google Scholar] [CrossRef]
- Komuro, K.; Nomura, T.; Barbastathis, G. Deep ghost phase imaging. Appl. Opt. 2020, 59, 3376–3382. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Zhao, G.; Xiao, H.; Liang, J.; Wang, D.; Tian, X.; Cheng, L.; Zhang, X. Deep-learning denoising computational ghost imaging. Opt. Lasers Eng. 2020, 134, 106183. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, M.; Gong, X.; Guan, J.; Song, J.; Song, Z.; Li, X.; Guo, S.; Chen, J.; Yu, S.; Gao, F. Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Appl. Sci. 2021, 11, 227. https://doi.org/10.3390/app11010227
Tao M, Gong X, Guan J, Song J, Song Z, Li X, Guo S, Chen J, Yu S, Gao F. Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Applied Sciences. 2021; 11(1):227. https://doi.org/10.3390/app11010227
Chicago/Turabian StyleTao, Min, Xiaobin Gong, Jian Guan, Junfeng Song, Zhixin Song, Xueyan Li, Shuxu Guo, Jian Chen, Siyao Yu, and Fengli Gao. 2021. "Ghost Imaging by a Proportional Parameter to Filter Bucket Data" Applied Sciences 11, no. 1: 227. https://doi.org/10.3390/app11010227
APA StyleTao, M., Gong, X., Guan, J., Song, J., Song, Z., Li, X., Guo, S., Chen, J., Yu, S., & Gao, F. (2021). Ghost Imaging by a Proportional Parameter to Filter Bucket Data. Applied Sciences, 11(1), 227. https://doi.org/10.3390/app11010227