Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Characterization
2.3. Pretreatment of Orange Peel
2.4. Cr (III) Adsorption at Equilibrium
2.5. Cr (III) Batch Adsorption Kinetics
2.6. Desorption Study of Cr (III) Present in OP
2.7. Determination of OP Isoelectric Point
3. Results
3.1. Cr (III) Adsorption Isotherms
3.2. Kinetics of Removal of Cr (III) Ions Using OP
3.3. Limitations for External and Internal Mass Transfer
3.4. Desorption of Cr (III) Loaded in OP
3.5. Characterization of OP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015, 270, 240–271. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Bhatnagar, A.; Hameed, B.H.; Ok, Y.S.; Omirou, M. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J. Mol. Liq. 2017, 240, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 2019, 17, 867–877. [Google Scholar] [CrossRef]
- Elabbas, S.; Leclerc, J.P.; Mandi, L.; Berrekhis, F.; Pons, M.N.; Ouazzani, N. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble. J. Environ. Manag. 2016, 166, 589–595. [Google Scholar] [CrossRef]
- Femina Carolin, C.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Jacob, J.J.; Varalakshmi, R.; Gargi, S.; Jayasri, M.A.; Suthindhiran, K. Removal of Cr (III) and Ni (II) from tannery effluent using calcium carbonate coated bacterial magnetosomes. Clean Water 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Peng, S.H.; Wang, R.; Yang, L.Z.; He, L.; He, X.; Liu, X. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol. Environ. Saf. 2018, 165, 61–69. [Google Scholar] [CrossRef]
- Arim, A.L.; Cecílio, D.F.M.; Quina, M.J.; Gando-Ferreira, L.M. Development and Characterization of Pine Bark with Enhanced Capacity for Uptaking Cr(III) from Aqueous Solutions. Can. J. Chem. Eng. 2018, 96, 855–864. [Google Scholar] [CrossRef]
- Arim, A.L.; Guzzo, G.; Quina, M.J.; Gando-Ferreira, L.M. Single and binary sorption of Cr(III) and Ni(II) onto modified pine bark. Environ. Sci. Pollut. Res. 2018, 28, 28039–28049. [Google Scholar] [CrossRef]
- Ranasinghe, S.H.; Navaratne, A.N.; Priyantha, N. Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent. J. Environ. Chem. Eng. 2018, 6, 5670–5682. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Amith, K.D.; Selvaraju, N.; Mohan, B.R.; Muhammed Anzil, P.K.; Ushakumary, E.R. Hydrous Cerium Oxide Nanoparticles Impregnated Enteromorpha sp. for the Removal of Hexavalent Chromium from Aqueous Solutions. J. Environ. Eng. 2015, 142, C4015016. [Google Scholar] [CrossRef]
- Flores-Cano, J.V.; Aragón-Pin, A.; Leyva-Ramos, R.; Salazar-Rabago, J.J.; Carrasco-Marin, F.; Leyva-Ramos, S. Adsorption mechanism of chromium(III) from water solution on bone char: Effect of operating conditions. Adsorption 2016, 22, 297–308. [Google Scholar] [CrossRef]
- Umar, F.; Janusz, A.; Kozinski-Misbahul, A.K.; Makshoof, A. Biosorption of heavy metal ions wheat based biosorbents—A review of the recent literature. Biores. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef]
- Sari, A.; Mendil, D.; Tuzen, M.; Soylak, M. Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2009, 144, 1–9. [Google Scholar] [CrossRef]
- Dias, D.; Lapa, N.; Bernardo, M.; Ribeiro, W.; Matos, I.; Fonseca, I.; Pinto, F. Cr(III) removal from synthetic and industrial wastewaters by using cogasification chars of rice waste streams. Bioresour. Technol. 2018, 266, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.K.; Hasan, S.H.; Talat, M.; Singh, V.K.; Gangwar, S.K. Removal of Cr (VI) from aqueous solutions using wheat bran. Chem. Eng. J. 2009, 151, 113–121. [Google Scholar] [CrossRef]
- Lugo-Lugo, V.; Barrera-Díaz, C.; Ureña-Núñez, F.; Bilyeu, B.; Linares-Hernández, I. Biosorption of Cr (III) and Fe (III) in single and binary systems onto pretreated orange peel. J. Environ. Manag. 2012, 112, 120–127. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 2011, 185, 49–54. [Google Scholar] [CrossRef]
- Pérez-Marín, A.B.; Aguilar, M.I.; Meseguer, V.F.; Ortuño, J.F.; Sáez, J.; Lloréns, M. Biosorption of chromium (III) by orange (Citrus cinensis) waste: Batch and continuous studies. Chem. Eng. J. 2009, 155, 199–206. [Google Scholar] [CrossRef]
- Chen, H.; Dou, J.; Xu, H. Removal of Cr(VI) ions by sewage sludge aqueous compost biomass from solutions: Reduction to Cr(III) and biosorption. Appl. Surf. Sci. 2017, 425, 728–735. [Google Scholar] [CrossRef]
- Hernandez-Maldonado, J.A.; Torres-Garcia, F.A.; Salazar-Hernandez, M.M.; Hernandez-Soto, R. Removal of chromium from contaminated liquid effluents using natural brushite obtained from bovine bone. Desalin. Water Treat. 2017, 95, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Bikiaris, D.N.; Mitropoulos, A.C. Chitosan adsorbents for dye removal: A review. Polym. Int. 2017, 66, 1800–1811. [Google Scholar] [CrossRef]
- Sudha, R.; Srinivasan, K.; Premkumar, P. Removal of nickel (II) from aqueous solution using Citrus limettioides peel and seed carbon. Ecotoxicol. Environ. Saf. 2015, 117, 115–123. [Google Scholar] [CrossRef]
- Joaquín-Medina, E.; Patiño-Saldivar, L.; Ardilas-Arias, A.N.; Salazar-Hernández, M.; Hernández, J.A. Bioadsorption of methyl orange and methylene blue contained in water using as bioadsorbent Natural Brushite (nDCPD). Water Sci. Technol. 2021, in press. [Google Scholar]
- Wang, X.S.; Zhou, Y.; Jiang, Y.; Sun, C. The removal of basic dyes from aqueous solutions using agricultural by-products. J. Hazard. Mater. 2008, 157, 374–385. [Google Scholar] [CrossRef]
- Hernández-Soto, R.; Hernández, J.A.; Ardila-Arias, A.N.; Salazar-Hernández, M.; Salazar-Hernandez, C. The Use of Industrial Waste for the Bioremediation of Water Used in Industrial Processes. In Water Chemistry, 1st ed.; Eyvaz, M., Yüsel, E., Eds.; IntechOpen: London, UK, 2020; pp. 282–286. [Google Scholar]
- Muñoz, B.E.L.; Robles, R.R.; García, J.L.I.; Gutiérrez, M.T.O. Adsorption of Basic Chromium Sulfate used in the Tannery Industries by Calcined Hydrotalcite. J. Mex. Chem. Soc. 2011, 55, 137–141. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.; Hong, H.J.; Choi, Y.E.; Yang, J.W. Biosorption of chromium (Cr (III)/Cr (VI)) on the residual microalga Nannochloris oculata after lipid extraction for biodiesel production. Biores. Technol. 2011, 102, 11155–11160. [Google Scholar] [CrossRef]
- Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process Biochem. 2005, 40, 1319–1322. [Google Scholar] [CrossRef]
- Black, M.; Canova, M.; Rydin, S.; Scalet, B.M.; Roudier, S.; Delgado, L.-S. Best Available Techniques (BAT) Reference Document for the Tanning of Hides and Skins. Eur. Comm. Database 2013, 46, 2013. [Google Scholar] [CrossRef]
- Uluozlu, O.D.; Sarı, A.; Tuzen, M.; Soylak, M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Biores. Technol. 2008, 99, 2972–2980. [Google Scholar] [CrossRef]
- Akhtar, N.; Iqbal, M.; Zafar, S.I.; Iqbal, J. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr (III). J. Environ. Sci. 2008, 20, 231–239. [Google Scholar] [CrossRef]
- Bishnoi, N.R.; Kumar, R.; Kumar, S.; Rani, S. Biosorption of Cr (III) from aqueous solution using algal biomass spirogyra spp. J. Hazard. Mater. 2007, 145, 142–147. [Google Scholar] [CrossRef]
- Bertagnolli, C.; da Silva, M.G.C.; Guibal, E. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chem. Eng. J. 2014, 237, 362–371. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Mohamed, R.H.A. Biosorption and removal of Cr (VI)–Cr (III) from water by eco-friendly gelatin biosorbent. J. Environ. Chem. Eng. 2014, 2, 715–722. [Google Scholar] [CrossRef]
- Carmona, M.E.R.; da Silva, M.A.P.; Leite, S.G.F.; Echeverri, O.H.V.; Ocampo-López, C. Packed bed redistribution system for Cr (III) and Cr (VI) biosorption by Saccharomyces cerevisiae. J. Taiwan Inst. Chem. Eng. 2012, 43, 428–432. [Google Scholar] [CrossRef]
- Blázquez, G.; Hernáinz, F.; Calero, M.; Martín-Lara, M.A.; Tenorio, G. The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chem. Eng. J. 2009, 148, 473–479. [Google Scholar] [CrossRef]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from wáter. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Sing, K. Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity. Pure App. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Chao, H.-P.; Chang, C.-C.; Nieva, A. Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J. Ind. Eng. Chem. 2014, 20, 3408–3414. [Google Scholar] [CrossRef]
- Ngabura, M.; Hussain, S.A.; Ghani, W.A.; Jami, M.S.; Tan, Y.P. Utilization of renewable durian peels for biosorption of zinc from wastewater. J. Environ. Chem. Eng. 2018, 6, 2528–2539. [Google Scholar] [CrossRef]
- Khasri, A.; Jamir, M.R.M.; Ahmad, M.A. Adsorbent from orange peel for Remazol Brilliant dye removal: Equilibrium and kinetic studies. AIP Conf. Proc. 2019, 2124, 020055. [Google Scholar] [CrossRef]
- El Hamidi, A.; Mulongo Masamba, R.; Khachani, M.; Halim, M.; Arsalane, S. Kinetics modeling in liquid phase sorption of copper ions on brushite di-calcium phosphate di-hydrate CaHPO4· 2H2O (DCPD). Desalin. Water Treat. 2014, 56, 779–791. [Google Scholar] [CrossRef]
- Khaskheli, M.I.; Memon, S.Q.; Siyal, A.N.; Khuhawar, M.Y. Use of orange peel waste for arsenic remediation of drinking water. Waste Biomass Valorization 2011, 2, 423. [Google Scholar] [CrossRef]
- Reymond, J.P.; Kolenda, F. Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol. 1999, 103, 30–36. [Google Scholar] [CrossRef]
- Malook, K.; Ihsan-ul-Haque. Investigation of Aqueous Cr (VI) Adsorption Characteristics of Orange Peels Powder. Prot. Met. Phys. Chem. 2019, 55, 34–40. [Google Scholar] [CrossRef]
- Sun, L.; Ma, Y.; Wang, H.; Zhu, T. Synthesis of florisil materials modified with aliphatic or aromatic groups and the application for pipette-tip solid-phase extraction of rutin in orange peel. J. Sep. Sci. 2018, 41, 3716–3723. [Google Scholar] [CrossRef]
Model | Equation |
---|---|
SIPS | |
Redlich–Peterson (RP) | |
Langmuir | |
Temkin | |
Freundlich | |
Dubinin–Radushkevich (DR) |
Model | Equation |
---|---|
Pseudo first order (PFO) | |
Pseudo second order (PSO) | |
Elovich | |
Intraparticle diffusion (ID) | |
External diffusion (ED) |
Model | Parameter | WTOP | MTOP | OPTmW | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.91 | 1.78 | 2.72 | 0.91 | 1.78 | 2.72 | 0.91 | 1.78 | 2.72 | ||
Freundlich | KF | 0.0340 | 0.0318 | 0.0265 | 0.1551 | 0.1874 | 0.0726 | 0.0309 | 0.0204 | 0.1328 |
n | 0.9835 | 0.9504 | 0.9207 | 1.4019 | 1.3572 | 1.0936 | 1.1246 | 0.9192 | 1.3047 | |
R2 | 0.9897 | 0.9974 | 0.9990 | 0.9843 | 0.9909 | 0.9800 | 0.9973 | 0.9694 | 0.9911 | |
Δq, % | 0.4123 | 0.3465 | 0.5436 | 1.6518 | 1.7081 | 0.7291 | 0.7770 | 2.1495 | 1.5222 | |
SIPS | KS | 0.0021 | 0.0026 | 0.0021 | 0.0022 | 0.0028 | 0.0024 | 0.0008 | 0.0020 | 0.0009 |
qm | 39.5687 | 45.9814 | 48.9957 | 26.0913 | 30.0010 | 39.0051 | 32.5885 | 26.3521 | 55.1599 | |
nS | 2.5231 | 2.5680 | 2.5339 | 1.6252 | 2.0878 | 2.7234 | 1.2414 | 1.9425 | 1.1245 | |
R2 | 0.9809 | 0.9703 | 0.9558 | 0.9974 | 0.9864 | 0.9684 | 0.9995 | 0.9119 | 0.9935 | |
Δq, % | 1.7376 | 0.7235 | 0.3352 | 11.7912 | 1.0686 | 0.0803 | 58.4605 | 1.7788 | 51.6805 | |
RP | KR | 10.1023 | 2.2159 | 1.7722 | 0.0374 | 0.0495 | 0.0477 | 0.0175 | 46.9522 | 0.0404 |
aR | 264.3194 | 48.2727 | 36.6792 | 0.0008 | 0.0009 | 0.0002 | 0.0002 | 0.1265 | 0.0005 | |
β | 6.17 × 10−18 | 1.19 × 10−17 | 2.35 × 10−18 | 1.0000 | 0.9581 | 1.0000 | 1.0000 | 2.96 × 10−18 | 1.0000 | |
R2 | 0.9896 | 0.9965 | 0.9968 | 0.9915 | 0.9947 | 0.9820 | 0.9985 | 0.9693 | 0.9933 | |
Δq, % | 71.5062 | 2.9880 | 10.9911 | 13.1963 | 13.8905 | 12.7091 | 113.5888 | 26.9331 | 9.7678 |
−ΔG, kJ/mol | |||
---|---|---|---|
pH | 0.91 | 1.78 | 2.72 |
WTOP | 22.49 | 23.24 | 22.85 |
MTOP | 23.58 | 23.31 | 23.02 |
OPTmA | 22.68 | 22.18 | 23.38 |
WTOP | MTOP | OPTmW | |||||||
---|---|---|---|---|---|---|---|---|---|
pH = 0.91 | |||||||||
Cads, g/L | k1, mg/g h0.5 | k2, mg/g h0.5 | k1, mg/g h0.5 | k2, mg/g h0.5 | k1, mg/g h0.5 | k2, mg/g h0.5 | |||
4 | 20.55 | 9.232 | 2.226 | 7.936 | 8.846 | 0.897 | 7.192 | 4.141 | 1.737 |
8 | 9.709 | 5.312 | 1.828 | 4.622 | 11.94 | 0.387 | 4.761 | 3.073 | 1.549 |
12 | 5.735 | 4.133 | 1.388 | 4.118 | 8.156 | 0.505 | 3.884 | 2.860 | 1.358 |
16 | 4.584 | 2.427 | 1.891 | 3.057 | 3.898 | 0.784 | 3.289 | 2.772 | 1.187 |
20 | 4.618 | 1.372 | 3.367 | 2.757 | 2.891 | 0.954 | 3.157 | 2.173 | 1.453 |
pH = 1.78 | |||||||||
4 | 20.39 | 7.321 | 2.785 | 8.496 | 13.258 | 0.641 | 8.7282 | 6.627 | 1.317 |
8 | 13.42 | 7.808 | 1.712 | 7.142 | 10.827 | 0.661 | 6.5951 | 5.769 | 1.143 |
12 | 7.771 | 6.771 | 1.147 | 4.656 | 8.606 | 0.541 | 5.8969 | 5.357 | 1.101 |
16 | 7.798 | 5.672 | 1.375 | 4.959 | 1.766 | 2.809 | 5.2646 | 2.681 | 1.964 |
20 | 7.289 | 3.285 | 2.221 | 3.829 | 5.649 | 0.678 | 5.0513 | 2.484 | 2.034 |
pH = 2.72 | |||||||||
4 | 9.545 | 22.98 | 0.415 | 17.33 | 12.52 | 1.384 | 11.5779 | 9.309 | 1.244 |
8 | 11.62 | 15.31 | 0.759 | 17.72 | 7.292 | 2.431 | 13.4812 | 6.256 | 2.155 |
12 | 8.034 | 10.63 | 0.755 | 6.906 | 5.096 | 1.355 | 5.5757 | 5.219 | 1.068 |
16 | 7.391 | 8.126 | 0.909 | 10.03 | 3.061 | 3.277 | 7.4106 | 3.131 | 2.367 |
20 | 2.091 | 6.497 | 0.322 | 7.957 | 2.303 | 3.456 | 6.3875 | 2.781 | 2.297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patiño-Saldivar, L.; Hernández, J.A.; Ardila, A.; Salazar-Hernández, M.; Talavera, A.; Hernández-Soto, R. Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis). Appl. Sci. 2021, 11, 6346. https://doi.org/10.3390/app11146346
Patiño-Saldivar L, Hernández JA, Ardila A, Salazar-Hernández M, Talavera A, Hernández-Soto R. Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis). Applied Sciences. 2021; 11(14):6346. https://doi.org/10.3390/app11146346
Chicago/Turabian StylePatiño-Saldivar, Laura, José A. Hernández, Alba Ardila, Mercedes Salazar-Hernández, Alfonso Talavera, and Rosa Hernández-Soto. 2021. "Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis)" Applied Sciences 11, no. 14: 6346. https://doi.org/10.3390/app11146346
APA StylePatiño-Saldivar, L., Hernández, J. A., Ardila, A., Salazar-Hernández, M., Talavera, A., & Hernández-Soto, R. (2021). Cr (III) Removal Capacity in Aqueous Solution in Relation to the Functional Groups Present in the Orange Peel (Citrus sinensis). Applied Sciences, 11(14), 6346. https://doi.org/10.3390/app11146346