Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Experimental Design for Extraction Optimization
2.3. Ultrasound-Assisted Extractions (UAE)
2.4. Identification and Quantification of Phenolic Compounds
2.5. Extraction Process Modelling and Statistical Analysis
2.6. Models Validation and Evaluation of the Bioactivity of the Extract Produced under Optimized Extraction Conditions
2.7. Bioactivities Evaluation
2.7.1. Antioxidant Activity
2.7.2. Anti-Inflammatory Activity
2.7.3. Cytotoxicity to Tumor Cell Lines and Hepatotoxic Activity
2.7.4. Antimicrobial Activity
3. Results and Discussion
3.1. Phenolic Profile of the Kiwi Peel Extract and Experimental Data for UAE Optimization
3.2. Models Fitting and Statistical Verification
3.3. Effect of the Extraction Parameters on the Responses
3.4. Optimal UAE Conditions
3.5. Experimental Validation of the Predictive Model
3.6. Bioactivity of the Kiwi Peel Extract Obtained under Optimized UAE Conditions
3.6.1. Antioxidant Activity
3.6.2. Cytotoxic and Anti-Inflammatory Activity
3.6.3. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO) Food Loss and Food Waste|Policy Support and Governance Gateway. Available online: http://www.fao.org/policy-support/policy-themes/food-loss-food-waste/en/ (accessed on 27 June 2021).
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, S.; Isen, J.; Dalai, A.K.; Kozinski, J.A. Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers. Manag. 2016, 110, 296–306. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I. Plant-based by-products. In Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 367–397. [Google Scholar]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Lavelli, V. Circular food supply chains—Impact on value addition and safety. Trends Food Sci. Technol. 2021, 114, 323–332. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, Y.; Chen, X.; He, H.; Liu, Z.; Zhang, Z.; Ren, Y.; Ren, X. Phenolic compounds and antioxidant activity in red- and in green-fleshed kiwifruits. Food Res. Int. 2019, 116, 291–301. [Google Scholar] [CrossRef]
- Park, Y.S.; Namiesnik, J.; Vearasilp, K.; Leontowicz, H.; Leontowicz, M.; Barasch, D.; Nemirovski, A.; Trakhtenberg, S.; Gorinstein, S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 2014, 165, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Sanz, V.; López-Hortas, L.; Torres, M.D.; Domínguez, H. Trends in kiwifruit and byproducts valorization. Trends Food Sci. Technol. 2021, 107, 401–414. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Prieto, M.A.; Barreiro, F.M.F.; Oliveira, M.B.P.; Ferreira, I.C.F.R. Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwave- and ultrasound-assisted extraction techniques: A comparative study through response surface analysis. Sep. Purif. Technol. 2017, 186, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.R.; Prieto, M.A.; Vazquez, J.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Res. Int. 2018, 109, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. Calluna vulgaris (L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Vaz, J.A.; Heleno, S.A.; Martins, A.; Almeida, G.M.; Vasconcelos, M.H.; Ferreira, I.C.F.R. Wild mushrooms Clitocybe alexandri and Lepista inversa: In vitro antioxidant activity and growth inhibition of human tumour cell lines. Food Chem. Toxicol. 2010, 48, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Griensven, L.J.L.D. van Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.; van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod. 2017, 95, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Pinela, J.; Prieto, M.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Sep. Purif. Technol. 2016, 164, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of agricultural practices, conventional vs. organic, on the phytochemical composition of ‘Kweli’ and ‘Tulameen’ raspberries (Rubus idaeus L.). Food Chem. 2020, 328, 126833. [Google Scholar] [CrossRef]
- Latocha, P.; Krupa, T.; Wołosiak, R.; Worobiej, E.; Wilczak, J. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef]
- Rocha, R.; Pinela, J.; Abreu, R.M.V.; Añibarro-Ortega, M.; Pires, T.C.S.P.; Saldanha, A.L.; Alves, M.J.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L. Extraction of anthocyanins from red raspberry for natural food colorants development: Processes optimization and in vitro bioactivity. Processes 2020, 8, 1447. [Google Scholar] [CrossRef]
- Iberahim, N.; Sethupathi, S.; Goh, C.L.; Bashir, M.J.K.; Ahmad, W. Optimization of activated palm oil sludge biochar preparation for sulphur dioxide adsorption. J. Environ. Manag. 2019, 248, 109302. [Google Scholar] [CrossRef]
- Dias, M.; Caleja, C.; Pereira, C.; Calhelha, R.C.; Kostic, M.; Sokovic, M.; Tavares, D.; Baraldi, I.J.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Res. Int. 2020, 127, 108753. [Google Scholar] [CrossRef]
- Bernardes, N.R.; Talma, S.V.; Sampaio, S.H.; Nunes, C.R.; Rangel de Almeida, J.A.; De Oliveira, D.B. Atividade antioxidante e fenóis totais de frutas de Campos dos Goytacazes RJ. Biol. Saúde 2011, 1. [Google Scholar] [CrossRef]
- Fiorentino, A.; Mastellone, C.; D’Abrosca, B.; Pacifico, S.; Scognamiglio, M.; Cefarelli, G.; Caputo, R.; Monaco, P. δ-Tocomonoenol: A new vitamin E from kiwi (Actinidia chinensis) fruits. Food Chem. 2009, 115, 187–192. [Google Scholar] [CrossRef]
- Soquetta, M.B. Physicochemical, Microbiological Characterization and Bioactive Compounds of Kiwi (Actinidia deliciosa) Peel and Pomace Flour and Application in Pâté; Universidade Federal de Santa Maria: Santa Maria, Brazil, 2015. [Google Scholar]
- Moita, J.P.R. Influência de Infusões de Plantas na Permeação de Aminoácidos Pela Barreira Intestinal e Identificação de Compostos Bioativos Com Propriedades Antioxidantes; Universidade de Lisboa: Lisboa, Portugal, 2015. [Google Scholar]
- Lim, S.; Han, S.H.; Kim, J.; Lee, H.J.; Lee, J.G.; Lee, E.J. Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chem. 2016, 190, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, X.; Lee, S.G.; Kang, H.; Heo, H.J.; Cho, Y.S.; Kim, D.O. Antioxidant and anti-inflammatory effects of various cultivars of kiwi berry (Actinidia arguta) on lipopolysaccharide-stimulated raw 264.7 cells. J. Microbiol. Biotechnol. 2016, 26, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- El Kichaoi, A.; El-Hindi, M.; Mosleh, F.; Elbashiti, T. The antimicrobial effects of the fruit extracts of Punica granatum, Actinidia deliciosa and Citrus maxima on some human pathogenic microorganisms. Am. Int. J. Biol. 2015, 3, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Gavrović-Jankulović, M.; Ćirković, T.; Vučković, O.; Atanasković-Marković, M.; Petersen, A.; Gojgić, G.; Burazer, L.; Jankov, R.M. Isolation and biochemical characterization of a thaumatin-like kiwi allergen. J. Allergy Clin. Immunol. 2002, 110, 805–810. [Google Scholar] [CrossRef]
- Xia, L.; Ng, T.B. Actinchinin, a novel antifungal protein from the gold kiwi fruit. Peptides 2004, 25, 1093–1098. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmax (nm) | [M-H]- (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 A | 5.85 | 281 | 577 | 451(27), 425(100), 407(32), 289(10) | B-type (epi)catechin dimer |
2 A | 7.63 | 280 | 289 | 245(100), 205(41), 179(17) | Epicatechin |
3 B | 18.71 | 352 | 463 | 301(100) | Quercetin-3-O-glucoside |
4 B | 20.28 | 351 | 477 | 301(100) | Quercetin-3-O-rhamnoside |
Runs | Experimental Domain | Experimental Responses * | |||||||
---|---|---|---|---|---|---|---|---|---|
t (min) | P (W) | EtOH (%) | Y1 (%, w/w) | Y2 (mg/g dw) | Y3 (mg/g dw) | Y4 (mg/g dw) | Y5 (mg/g dw) | Y6 (mg/g dw) | |
1 | 10 (−1) | 106 (−1) | 20 (−1) | 47.90 | 0.5389 | 0.6237 | 0.1411 | 0.1380 | 1.4416 |
2 | 36 (+1) | 106 (−1) | 20 (−1) | 50.63 | 0.4629 | 0.8580 | 0.1440 | 0.1448 | 1.6097 |
3 | 10 (−1) | 400 (+1) | 20 (−1) | 54.09 | 0.4954 | 0.4684 | 0.0601 | 0.1385 | 1.1624 |
4 | 36 (+1) | 400 (+1) | 20 (−1) | 59.14 | 0.4873 | 0.7263 | 0.0601 | 0.1388 | 1.4126 |
5 | 10 (−1) | 106 (−1) | 80 (+1) | 45.09 | 0.5013 | 0.4366 | 0.1415 | 0.1421 | 1.2214 |
6 | 36 (+1) | 106 (−1) | 80 (+1) | 45.66 | 0.4892 | 0.4393 | 0.1430 | 0.1423 | 1.2138 |
7 | 10 (−1) | 400 (+1) | 80 (+1) | 47.35 | 0.5249 | 0.4374 | 0.1442 | 0.1409 | 1.2475 |
8 | 36 (+1) | 400 (+1) | 80 (+1) | 51.10 | 0.5126 | 0.3645 | 0.1451 | 0.1429 | 1.1651 |
9 | 1 (−1.68) | 253 (0) | 50 (0) | 50.44 | 0.4215 | 0.2826 | 0.1498 | 0.1462 | 1.0001 |
10 | 45 (+1.68) | 253 (0) | 50 (0) | 51.96 | 0.3686 | 0.3884 | 0.1622 | 0.1493 | 1.0685 |
11 | 23 (0) | 5 (−1.68) | 50 (0) | 50.43 | 0.4304 | 1.0289 | 0.1446 | 0.1464 | 1.7502 |
12 | 23 (0) | 500 (+1.68) | 50 (0) | 59.02 | 0.4258 | 1.2575 | 0.0833 | 0.1487 | 1.6300 |
13 | 23 (0) | 253 (0) | 0 (−1.68) | 48.35 | 0.5983 | 0.6216 | 0.0851 | 0.1329 | 1.4379 |
14 | 23 (0) | 253 (0) | 100 (+1.68) | 36.87 | 0.6038 | 0.3010 | 0.1378 | 0.1361 | 1.1787 |
15 | 23 (0) | 253 (0) | 50 (0) | 52.02 | 0.3067 | 1.1225 | 0.1565 | 0.1471 | 1.7328 |
16 | 23 (0) | 253 (0) | 50 (0) | 46.13 | 0.2932 | 0.9786 | 0.1518 | 0.1449 | 1.5685 |
17 | 23 (0) | 253 (0) | 50 (0) | 49.73 | 0.3074 | 1.0002 | 0.1535 | 0.1459 | 1.6070 |
18 | 23 (0) | 253 (0) | 50 (0) | 50.58 | 0.3172 | 1.0508 | 0.1547 | 0.1468 | 1.6695 |
19 | 23 (0) | 253 (0) | 50 (0) | 50.02 | 0.3068 | 1.0231 | 0.1536 | 0.1455 | 1.6290 |
20 | 23 (0) | 253 (0) | 50 (0) | 51.38 | 0.3189 | 1.0933 | 0.1592 | 0.1474 | 1.7189 |
Optimal Processing Conditions | Response Optimum | ||||
---|---|---|---|---|---|
Time (min) | Power (W) | EtOH (%) | Model-Predicted Values | Experimental Values | |
Individual conditions for each response variable | |||||
Extraction yield (extract) | 34.4 | 483.0 | 34.1 | 61 ± 1% (w/w) | - |
B-type (epi)catechin dimer | 11.2 | 393.0 | 94.8 | 0.64 ± 0.01 mg/g dw | - |
Epicatechin | 24.6 | 222.6 | 41.6 | 1.06 ± 0.02 mg/g dw | - |
Quercetin-3-O-glucoside | 39.2 | 191.4 | 59.2 | 0.164 ± 0.002 mg/g dw | - |
Quercetin-3-O-rhamnoside | 45.0 | 257.6 | 53.2 | 0.148 ± 0.001 mg/g dw | - |
Total flavonoids | 24.9 | 5.0 | 34.1 | 1.82 ± 0.03 mg/g dw | - |
Global conditions considering all response variables | |||||
Extraction yield (extract) | 14.8 | 94.4 | 68.4 | 46 ± 1% (w/w) | 46 ± 2% (w/w) |
B-type (epi)catechin dimer | 0.426 ± 0.008 mg/g dw | 0.432 ± 0.006 mg/g dw | |||
Epicatechin | 0.78 ± 0.02 mg/g dw | 0.78 ± 0.04 mg/g dw | |||
Quercetin-3-O-glucoside | 0.148 ± 0.002 mg/g dw | 0.150 ± 0.003 mg/g dw | |||
Quercetin-3-O-rhamnoside | 0.145 ± 0.001 mg/g dw | 0.1468 ± 0.0002 mg/g dw | |||
Total flavonoids | 1.49 ± 0.03 mg/g dw | 1.51 ± 0.04 mg/g dw |
Kiwi Peel Extract | E211 | E224 | ||||
---|---|---|---|---|---|---|
Antibacterial activity | MIC | MBC | MIC | MBC | MIC | MBC |
Staphylococcus aureus | 1 | 2 | 4 | 4 | 1 | 1 |
Bacillus cereus | 2 | 4 | 0.5 | 0.5 | 2 | 4 |
Listeria monocytogenes | 2 | 4 | 1 | 2 | 0.5 | 1 |
Escherichia coli | 1 | 2 | 1 | 2 | 0.5 | 1 |
Salmonella Typhimurium | 2 | 4 | 1 | 2 | 1 | 1 |
Enterobacter cloacae | 2 | 4 | 2 | 4 | 0.5 | 0.5 |
Antifungal activity | MIC | MFC | MIC | MFC | MIC | MFC |
Aspergillus ochraceus | 0.5 | 1 | 1 | 2 | 1 | 1 |
Aspergillus niger | 1 | 2 | 1 | 2 | 1 | 1 |
Aspergillus versicolor | 0.5 | 1 | 2 | 2 | 1 | 1 |
Penicillium funiculosum | 0.5 | 1 | 1 | 2 | 0.5 | 0.5 |
Penicillium aurantiogriseum | 1 | 2 | 2 | 4 | 1 | 1 |
Trichoderma viride | 0.5 | 0.5 | 1 | 2 | 0.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Stojković, D.; Soković, M.; Tavares, D.; Cánepa, A.L.; Ferreira, I.C.F.R.; Caleja, C.; et al. Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Appl. Sci. 2021, 11, 6416. https://doi.org/10.3390/app11146416
Giordano M, Pinela J, Dias MI, Calhelha RC, Stojković D, Soković M, Tavares D, Cánepa AL, Ferreira ICFR, Caleja C, et al. Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment. Applied Sciences. 2021; 11(14):6416. https://doi.org/10.3390/app11146416
Chicago/Turabian StyleGiordano, Miguel, José Pinela, Maria Inês Dias, Ricardo C. Calhelha, Dejan Stojković, Marina Soković, Débora Tavares, Analía Laura Cánepa, Isabel C. F. R. Ferreira, Cristina Caleja, and et al. 2021. "Ultrasound-Assisted Extraction of Flavonoids from Kiwi Peel: Process Optimization and Bioactivity Assessment" Applied Sciences 11, no. 14: 6416. https://doi.org/10.3390/app11146416