Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar
2.2. Biofertilizer
2.3. Sampling Site
Preparation and Characterization of Soil
2.4. Greenhouse Experiment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biochar and Biofetilizer Characteristics
3.2. Initial Direct Effects of Biochar on Soil Characteristics
3.3. Short-Term Effects of Biochar and Biofertilizer on Soil Characteristics
3.4. Effect of Biochar and Biofertilizer on the Crop Physalis Ixocarpa
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eswaran, H.R.; Lal, R.; Reich, P.F. Land degradation: An overview. In Responses to Land Degradation; Oxford Press: New Delhi, India, 2001. [Google Scholar]
- Barakat, H.N. Arid lands: Challeges and hopes. In Earth System: History and Natural Varibility; Cilek, V., Ed.; EOLSS Publications: Singapore, 2009; p. 356. [Google Scholar]
- Mirzabaev, A.; Wu, J.; Evans, J.; García-Oliva, F.; Hussein, I.A.G.; Iqbal, M.H.; Kimutai, J.; Knowles, T.; Meza, F.; Nedjraoui, D.; et al. Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, J.S.P.R., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., et al., Eds.; IPCC: Geneva, Switzerland, 2019; in press. [Google Scholar]
- World Atlas Desertification. Aridity Projections—Drier Types. Limits to Sustainability. 2019. Available online: https://wad.jrc.ec.europa.eu/aridityprojections (accessed on 30 April 2021).
- Merfield, C.N.; Johnson, M. Understantding Biostimulants, Biofertilisers and On-Farm Trials; The BHU Future Farming Centre: Lincoln, New Zealand, 2016; pp. 1–13. [Google Scholar]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, L. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Krishnakumar, S.; Rajalakshmi, A.G.; Balaganesh, B.; Manikandan, P.; Vinoth, C.; Rajendran, V. Impact of biochar on soil health. Int. J. Adv. Res. 2014, 2, 933–950. [Google Scholar]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Bowen, G.D.; Rovira, A.D. The rizhosphere and its management to improve plant growth. Adv. Agron. 1999, 66, 1–102. [Google Scholar]
- Bashan, Y. El uso de inoculantes microbianos como una importante contribución al futuro de la agricultura mexicana. In La Biofertilización como Tecnología Sostenible; Díaz-Franco, A., Mayek-Perez, N., Eds.; Plaza y Valdéz: Mexico City, Mexico, 2008; pp. 17–24. [Google Scholar]
- Abdul, G.K. Mycorrhizoremediation—An enhanced form of phytoremediation. J. Zhejiang Univ. 2006, 7, 503–514. [Google Scholar]
- Olalde, P.V.; Serratos, R. Biofertilizantes: Micorrizas y bacterias promotoras de crecimiento. In La Biofertilización como Tecnología Sostenible; Díaz-Franco, A., Mayek-Perez, N., Eds.; Plaza y Valdés/CONACYT: Mexico City, Mexico, 2008. [Google Scholar]
- Martínez, M.M. Microbial bioproducts for agriculture. Acta Hortic. 2015, 1076, 71–76. [Google Scholar] [CrossRef]
- Aguado-Santacruz, G.A. (Ed.) Introducción al Uso y Manejo de los Biofertilizantes en la Agricultura; INIFAP/SAGARPA: Celaya, Mexico, 2012; p. 316. [Google Scholar]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level. J. Plant Growth Regul. 2018, 38, 438–448. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Geng, C.; El Mashad, H.; Li, H.; Yin, W. Biochar from microwave pyrolysis of Artemisia slengensis: Characterization and methylene blue adsorption capacity. Appl. Sci. 2019, 9, 1813. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Sarfraz, R.; Yang, W.; Wang, S.; Zhou, B.; Xing, S. Short term effects of biochar with different particle sizes on phosphorous availability and microbial communities. Chemosphere 2020, 256. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, Y.; Liw, W.; Tang, W.; Meng, J.; Chen, W.; Li, X. Strain-specific effects of biochar and its water-soluble compounds on bacterial growth. Appl. Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Yong, S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L.: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, T.; Zhang, Q.; Du, Z.; Wang, Y. Effects of biochar amendment on soil thermal properties in the North China Plain. Soil Sci. Soc. Am. J. 2016, 80, 1157–1166. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Huang, T. Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Int. Agrophys. 2015, 29, 257–266. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Samarh, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Burrel, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 05300. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soil Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, K.D.; Schoenau, J.J. Addition of biochar to a sandy desert soil: Effect on crop growth, water retention and selected properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Laghari, M.; Mirjat, M.S.; Zhiquan Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a desert sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Khalifa, N.; Yousef, L.F. A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, J.A.; Novak, J.M.; Busscher, W.J.; Ahmedna, M.; Rehrah, D.; Watts, D.W. Switchgrass Biochar Aff ects Two Aridisols. J. Environ. Qual. 2012, 41, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Ducey, T.F.; Ippolito, J.A.; Cantrell, K.B.; Novak, J.M.; Lentz, R.D. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl. Soil. Ecol. 2013, 65, 65–72. [Google Scholar] [CrossRef]
- INEGI. Hidalgo, Información by State. 2019. Available online: http://cuentame.inegi.org.mx/monografias/informacion/hgo/default.aspx?tema=me&e=13 (accessed on 15 March 2021).
- Martínez-Ortiz, J.A.; Lucho-Constantino, C.A.; Montiel-Palma, S.; Coronel-Olivares, C.; López-Pérez, P.A.; Beltrán-Hernández, R.I. Assessment of the Acid-Neutralizing Capacity of Agricultural Soils Affected by Acid Deposition in Hidalgo State, manuscript in preparation.
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.S.; Saratale, R.G.; Saratale, G.D.; Kumar, M.; Palem, R.R.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J. Clean. Prod. 2021, 297. [Google Scholar] [CrossRef]
- Yiping, L.; Yanxia, L.; Buckingham, K.; Henley, G.; Guomo, Z. Bamboo and Climate Change Mitigation; International Network for Bamboo and Rattan (INBAR): Beijing, China, 2010; p. 126645. [Google Scholar]
- IBI. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil; International Biochar Initiative: Washington, DC, USA, 2015. [Google Scholar]
- SEMARNAT. NOM-021-SEMARNAT-2000 Fertility, Salinity and Soil Classification Specifications, Study, Sampling and Analysis; Diario Oficial de la Federación: Mexico City, Mexico, 2002. [Google Scholar]
- Quintanar-Orozco, E.T.; Vázquez-Rodríguez, G.A.; Beltrán-Hernández, R.I.; Lucho-Constantino, C.A.; Coronel-Olivares, C.; González-Montiel, S.; Islas-Valdez, S. Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environ. Sci. Poll. 2018, 25, 28403–28412. [Google Scholar] [CrossRef]
- SIAP. Agricultural Production Statistics. 2020. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos_a.php (accessed on 6 June 2021).
- Boraste, A.; Vamsi, K.; Jhadav, A.; Khairnar, Y.; Gupta, N.; Trivedi, S.; Patil, P.; Gupta, G.; Gupta, M.; Mujapara, A.K.; et al. Biofertilizers: A novel tool for agriculture. Int. J. Microbiol. Res. 2009, 1, 23–31. [Google Scholar] [CrossRef]
- APHA AWWA WEF. Standard Methods for the Examination of Water and Wastewater; APHA AWWA WEF: Washington, DC, USA, 2012. [Google Scholar]
- EPA. Chapter Three-Metallic analytes. Method 3051 microwave-assisted acid digestion of sediments, sludges, soils and oils. In Test Methods for Evaluating Solid Waste Physical/Chemical Method, CD-ROM Revision 3; US Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the salkowsky reagent for indolic compounds produced by phytopathogenic. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Graham, H.D.; Henderson, J.H.M. Reaction of gibberellic acid and iberellins with Folin-Wu phosphomolybdic acid reagent and its use or quantitative assay. Plant Physiol. 1961, 36, 405–408. [Google Scholar] [CrossRef] [Green Version]
- INEGI. Municipal Geographic Information Directory of the United Mexican States. Zempoala, Hidalgo; INEGI: Mexico City, Mexico, 2009.
- Pellicone, G.; Caloiero, T.; Guagliardi, I. The De Martonne aridity index in Calabria (Southern Italy). J. Maps 2019, 15, 788–796. [Google Scholar] [CrossRef]
- García-Osuna, H.T.; Escobedo, B.L.; Robledo-Torres, V.; Benavides, M.A.; Ramírez, G.F. Germination and micropropagation of tetraploid husk tomato (Physalis ixocarpa). Rev. Mex. Cienc. Agric. 2015, 12, 2301–2311. [Google Scholar] [CrossRef] [Green Version]
- Shenstone, E.; Lippman, Z.; Van Eck, J. A review of nutritional properties and health benefits of Physalis species. Plant Foods Hum. Nutr. 2020, 75, 316–325. [Google Scholar] [CrossRef] [PubMed]
- CEDRSSA. Tomate Production and Trade in Mexico; Government of Mexico: Mexico City, Mexico, 2018; p. 13.
- Suthar, R.G.; Wang, C.; Nunes, M.C.N.; Chen, J.; Sargent, S.A.; Buckiln, R.A.; Gao, B. Bamboo biochar pyrolyzed at low temperature improves tomato plant growth and fruit quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, R.; Liu, R. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J. Anal. Appl. Pyrolysis 2014, 110, 375–381. [Google Scholar] [CrossRef]
- Bagreev, A.; Bandosz, T.J.; Locke, D.C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage-derived fertiliser. Carbon 2001, 39, 1971–1979. [Google Scholar] [CrossRef]
- Islas-Valdez, S.; Lucho-Constantino, C.A.; Beltrán-Hernández, R.I.; Gómez-Mercado, R.; Vázquez-Rodríguez, G.A.; Herrera, J.M.; Jiménez-González, A. Effectiveness of rabbit manure biofertilizer in barely crop yield. Environ. Sci. Poll. Res. 2017, 24, 25731–25740. [Google Scholar] [CrossRef]
- Bernal, M.; Alburquerque, J.A.; Bustamante, M.A.; Albiach, R.; Bonnati, A.; Moral, R. Uso Agrícola de Materiales Digeridos: Situación Actual y Perspectivas de Futuro III; Mundi Prensa: Madrid, Spain, 2014. [Google Scholar]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-hold ing capacity od sandy soils. Glob. Chang. Biol. Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.P.; Wahab, A.; Kangoma, E.; Blango, M.M.; Ngegba, M.P.; Suluku, R. Effect of biochar application depth on crop productivity under tropical rainfed conditions. Appl. Sci. 2019, 9, 2602. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geoch. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management. Science, Technology and Implementation, 2nd ed.; Earthscan: London, UK, 2015; p. 438. [Google Scholar]
- Eskew, D.L.; Welch, R.M.; Cary, E.E. Nickel in higher plants: Further evidence for an essential role. Plant Physiol. 1984, 76, 691–693. [Google Scholar] [CrossRef] [Green Version]
- Iyaka, Y.A. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays 2011, 6, 6774–6777. [Google Scholar] [CrossRef]
- Elad, Y.; Rav, D.D.; Meller, H.Y.; Borenshtein, M.; Ben, K.H.; Silber, A.; Graber, E.R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010, 100, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwart, D.C.; Kim, S.-H. Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. Hort. Sci. 2012, 47, 1736–1740. [Google Scholar] [CrossRef] [Green Version]
- Rasool, M.; Akhter, A.; Saleem, M. Molecular and biochemical insight into biochar and Bacillus subtilis induced defense in tomatoes against Alternaria solani. Sci. Hort. 2021, 285, 110203. [Google Scholar] [CrossRef]
- Cakmak, I.H.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crop. 2010, 94, 22–35. [Google Scholar]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar] [CrossRef]
- Cakmak, I.; Hengeler, C.; Marschner, H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 1994, 45, 1245–1250. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
pH | 8.2 ± 0.09 |
EC (µS·m−1) | 1021 ± 12 |
CEC (cmol+·kg−1) | 37 ± 3.1 |
Pav (mg·kg−1) | 250 ± 8.4 |
NT (mg·kg−1) | 3500 ± 0.005 |
Corg (%) | 67 ± 2.7 |
Cinorg (%) | 1.24 ± 0.003 |
H:Corg (molar ratio) | 0.38 ± 0.001 |
C:N | 191 ± 10 |
WHC (%) | 61 ± 4.7 |
BD (g·cm−3) | 0.20 ± 0.003 |
Particle-size | 33.5% < 0.6 mm |
Characteristic | Value |
---|---|
pH | 5.9 ± 0.11 |
EC (µS·m−1) | 20,800 ± 875 |
C:N | 4.5 ± 0.38 |
(mg·L−1) | |
COD | 5723 ± 125 |
NT | 1277 ± 35 |
PT | 603 ± 27 |
Ca K | 1241 ± 142 5568 ± 375 |
Mg Na | 909 ± 48 74 ± 8.9 |
Cu | 0.091 ± 0.004 |
Fe Zn | 2.58 ± 0.002 0.910 ± 0.005 |
Auxins | 1158 ± 12.7 |
Gibberellins | 22.5 ± 1.76 |
Soil Characteristic | before Crop Development | after 1st Crop Cycle | after 2nd Crop Cycle | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil | Soil + Biochar | CT | BT20 | BT50 | BBfT | CT | BT20 | BT50 | BBfT | |
pH | 7.6 ± 0.15 b | 7.2 ± 0.05 **a | 7.1 ± 0.10 a | 7 ± 0.02 a | 7.7 ± 0.10 b | 8.5 ± 0.04 e | 7.7 ± 0.15 b | 7.9 ± 0.10 c | 7.7 ± 0.10 b | 8.1 ± 0.10 d |
EC (µS m−1) | 933 ± 21 d | 923 ± 4 d | 1313 ± 6 d | 997 ± 23 e | 527 ± 2 c | 923 ± 3 d | 523 ± 40 c | 453 ± 12 b | 330 ± 7 a | 517 ± 7 c |
BD (g cm−3) ρBT (g cm−3) | 1.33 ± 0.01 f | 1.05 ± 0.01 **b 1.22 ± 0.008 | 1.13 ± 0.03 e | 1.10 ± 0.06 bd | 1.07 ± 0.07 bd | 0.95 ± 0.07 a | 1.13 ± 0.04 e | 1.02 ± 0.01 ab | 1.01 ± 0.02 ab | 1.00 ± 0.01 ab |
Texture | Sand | |||||||||
(mg kg−1) | ||||||||||
K | 257 ± 9.8 a | 302 ± 6.0 **bc | 357 ± 8.7 e | 289 ± 4.11 b | 312 ± 7.8 cd | 12 146 ± 9.7 h | 415 ± 7.8 f | 291 ± 5.9 b | 317 ± 2.7 d | 9975 ± 7.1 g |
Ca | 176 ± 12 b | 180 ± 7 b | 437 ± 6.0 e | 493 ± 6.0 f | 144 ± 2 a | 295 ± 8.5 d | 297 ± 7.6 d | 329 ± 10 b | 506 ± 5 f | 262 ± 7 c |
Mg | 8 ± 0.6 d | 7 ± 0.7 c | 5 ± 0.1 b | 3 ± 0.6 a | 3 ± 0.1 a | 5 ± 0.1 b | 2 ± 0.07 a | 2 ± 0.06 a | 9 ± 1.4 e | 6 ± 0.7 bc |
Mn | 20 ± 1.1 de | 21 ± 0.81 e | 17 ± 0.14 ab | 18 ± 0.08 bc | 16 ± 0.14 a | 16 ± 0.31 a | 19 ± 0.1 c | 19 ± 0.8 c | 19 ± 0.2 c | 21 ± 0.1 e |
Zn | 1.3 ± 0.003 a | 1.4 ± 0.008 a | 6 ± 0.3 b | 6 ± 0.3 b | 7 ± 0.02 c | 11 ± 0.2 d | 12 ± 0.05 e | 15 ± 0.1 f | 13 ± 0.5 g | 20 ± 0.05 g |
Fe | 5 ± 1.0 a | 9 ± 1.5 **a | 50 ± 4 c | 89 ± 7.5 e | 61 ± 3.6 d | 100 ± 6 f | 32 ± 3 b | 55 ± 3.1 cd | 77 ± 2.5 e | 49 ± 6.4 c |
Cu | 1.7 ± 0.5 a | 2.1 ± 0.2 a | 3.6 ± 0.2 b | 3.6 ± 0.2 b | 4 ± 0.08 bc | 4.7 ± 0.02 c | 15 ± 0.2 d | 27 ± 0.4 f | 14 ± 0.1 d | 22 ± 0.7 e |
Pb | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL |
Cd | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL |
Ni | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL | LDL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Méndez, A.S.; Ortega-Ramírez, E.; Lucho-Constantino, C.A.; Arce-Cervantes, O.; Vázquez-Rodríguez, G.A.; Coronel-Olivares, C.; Beltrán-Hernández, R.I. Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity. Appl. Sci. 2021, 11, 6502. https://doi.org/10.3390/app11146502
Cruz-Méndez AS, Ortega-Ramírez E, Lucho-Constantino CA, Arce-Cervantes O, Vázquez-Rodríguez GA, Coronel-Olivares C, Beltrán-Hernández RI. Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity. Applied Sciences. 2021; 11(14):6502. https://doi.org/10.3390/app11146502
Chicago/Turabian StyleCruz-Méndez, Addi Santiago, Esaú Ortega-Ramírez, Carlos Alexander Lucho-Constantino, Oscar Arce-Cervantes, Gabriela Alejandra Vázquez-Rodríguez, Claudia Coronel-Olivares, and Rosa Icela Beltrán-Hernández. 2021. "Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity" Applied Sciences 11, no. 14: 6502. https://doi.org/10.3390/app11146502
APA StyleCruz-Méndez, A. S., Ortega-Ramírez, E., Lucho-Constantino, C. A., Arce-Cervantes, O., Vázquez-Rodríguez, G. A., Coronel-Olivares, C., & Beltrán-Hernández, R. I. (2021). Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity. Applied Sciences, 11(14), 6502. https://doi.org/10.3390/app11146502