Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydroxylation of Atorvastatin by CYP102A1
2.3. Construction of an Expression Vector for the Heme Domain of CYP102A1 Mutant
2.4. Expression of CYP102A1 Mutants
2.5. LC-MS Analysis
2.6. Atorvastatin Hydroxylation’s Kinetic Parameters and Total Turnover Numbers
2.7. Comparison of Atorvastatin Hydroxylation Activity Supported by External Addition of Hydrogen Peroxide and In Situ Hydrogen Peroxide Generation
2.8. Measuring Hydrogen Peroxide Concentration
2.9. The Effect of Cosolvent on Hydroxylation of Atorvastatin Supported by Hydrogen Peroxide
2.10. Spectral Binding Titration
2.11. Statistical Analysis
3. Results and Discussion
3.1. Hydroxylation of Atorvastatin
3.2. The Kinetic Parameters and TTNs of Atorvastatin Hydroxylation Reactions Supported by Hydrogen Peroxide
3.3. Comparison of Atorvastatin 4-Hydroxylation Activity of CYP102A1 Supported by External Addition and In Situ Generation of Hydrogen Peroxide
3.4. Effect of Cosolvent on Atorvastatin Hydroxylation Activity Supported by Hydrogen Peroxide
3.5. Spectral Binding Titration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pahan, K. Lipid-lowering drugs. Cell Mol. Life Sci. 2006, 63, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Arca, M.; Gaspardone, A. Atorvastatin Efficacy in the Primary and Secondary Prevention of Cardiovascular Events. Drugs 2007, 67, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Taniguti, E.H.; Ferreira, Y.S.; Stupp, I.J.V.; Fraga-Junior, E.B.; Doneda, D.L.; Lopes, L.; Rios-Santos, F.; Lima, E.; Buss, Z.S.; Viola, G.G.; et al. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res. Bull. 2019, 146, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Kim, K.-B.; Bae, S.K.; Moon, B.-S.; Liu, K.-H.; Shin, J.-G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 2008, 38, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Poli, A. Atorvastatin: Pharmacological characteristics and lipid-lowering effects. Drugs 2007, 67 (Suppl. 1), 3–15. [Google Scholar] [CrossRef] [PubMed]
- Partani, P.; Verma, S.M.; Gurule, S.; Khuroo, A.; Monif, T. Simultaneous quantitation of atorvastatin and its two active metabolites in human plasma by liquid chromatography electrospray tandem mass spectrometry. J. Pharm. Anal. 2014, 4, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Hoffart, E.; Ghebreghiorghis, L.; Nussler, A.; Thasler, W.; Weiss, T.; Schwab, M.; Burk, O. Effects of atorvastatin metabolites on induction of drug-metabolizing enzymes and membrane transporters through human pregnane X receptor. Br. J. Pharmacol. 2012, 165, 1595–1608. [Google Scholar] [CrossRef] [Green Version]
- Guengerich, F.P. Introduction: Human Metabolites in Safety Testing (MIST) Issue. Chem. Res. Toxicol. 2009, 22, 237–238. [Google Scholar] [CrossRef] [Green Version]
- Luffer-Atlas, D.; Atrakchi, A. A decade of drug metabolite safety testing: Industry and regulatory shared learning. Expert Opin. Drug Metab. Toxicol. 2017, 13, 897–900. [Google Scholar] [CrossRef]
- Chun, Y.-J.; Shimada, T.; Waterman, M.R.; Guengerich, F.P. Understanding electron transport systems of Streptomyces cytochrome P450. Biochem. Soc. Trans. 2006, 34, 1183–1185. [Google Scholar] [CrossRef]
- Yun, C.-H.; Kim, K.-H.; Kim, D.-H.; Jung, H.-C.; Pan, J.-G. The bacterial P450 BM3: A prototype for a biocatalyst with human P450 activities. Trends Biotechnol. 2007, 25, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-Y.; Ryu, S.H.; Park, S.-H.; Cha, G.S.; Kim, D.-H.; Kim, K.-H.; Hong, A.W.; Ahn, T.; Pan, J.-G.; Joung, Y.H.; et al. Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs. Biotechnol. Bioeng. 2014, 111, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.J.C.; Bell, S.G.; Wong, L.-L. P450(BM3) (CYP102A1): Connecting the dots. Chem. Soc. Rev. 2012, 41, 1218–1260. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 2006, 124, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Anari, M.R.; Josephy, P.D.; Henry, T.; O’Brien, P.J. Hydrogen peroxide supports human and rat cytochrome P450 1A2-catalyzed 2-amino-3-methylimidazo [4,5-f] quinoline bioactivation to mutagenic metabolites: Significance of cytochrome P450 peroxygenase. Chem. Res. Toxicol. 1997, 10, 582–588. [Google Scholar] [CrossRef]
- Munro, A.W.; McLean, K.J.; Grant, J.L.; Makris, T.M. Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem. Soc. Trans. 2018, 46, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Shoji, O.; Watanabe, Y. Peroxygenase reactions catalyzed by cytochromes P450. J. Biol. Inorg. Chem. 2014, 19, 529–539. [Google Scholar] [CrossRef]
- Farinas, E.T.; Schwaneberg, U.; Glieder, A.; Arnold, F.H. Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation. Adv. Synth. Catal. 2001, 343, 601–606. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, K.-H.; Kim, D.-H.; Liu, K.-H.; Jung, H.-C.; Pan, J.-G.; Yun, C.-H. Generation of human metabolites of 7-ethoxycoumarin by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 2008, 36, 2166–2170. [Google Scholar] [CrossRef] [Green Version]
- Le, T.-K.; Jang, H.-H.; Nguyen, H.; Doan, T.; Lee, G.-Y.; Park, K.; Ahn, T.; Joung, Y.; Kang, H.-S.; Yun, C.-H. Highly regioselective hydroxylation of polydatin, a resveratrol glucoside, for one-step synthesis of astringin, a piceatannol glucoside, by P450 BM3. Enzym. Microb. Technol. 2016, 97, 34–42. [Google Scholar] [CrossRef]
- Jang, H.-H.; Ryu, S.-H.; Le, T.-K.; Doan, T.T.M.; Nguyen, T.H.H.; Park, K.D.; Yim, D.-E.; Kim, D.-H.; Kang, C.-K.; Ahn, T.; et al. Regioselective C-H hydroxylation of omeprazole sulfide by Bacillus megaterium CYP102A1 to produce a human metabolite. Biotechnol. Lett. 2017, 39, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kang, J.-Y.; Kim, D.; Park, S.-H.; Park, S.; Kim, D.; Park, K.; Lee, Y.J.; Jung, H.; Pan, J.-G.; et al. Generation of Human Chiral Metabolites of Simvastatin and Lovastatin by Bacterial CYP102A1 Mutants. Drug Metab. Dispos. Biol. Fate Chem. 2010, 39, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, C.; Cavaco-Paulo, A. In-situ Enzymatic Generation of Hydrogen Peroxide for Bleaching Purposes. Eng. Life Sci. 2008, 8, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb. Cell Fact. 2013, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Hosea, N.A.; Miller, G.P.; Guengerich, F.P. Elucidation of Distinct Ligand Binding Sites for Cytochrome P450 3A4. Biochemistry 2000, 39, 5929–5939. [Google Scholar] [CrossRef]
- Paul, C.E.; Churakova, E.; Maurits, E.; Girhard, M.; Urlacher, V.B.; Hollmann, F. In situ formation of H2 O2 for P450 peroxygenases. Bioorg. Med. Chem. 2014, 22, 5692–5696. [Google Scholar] [CrossRef]
- Freakley, S.J.; Kochius, S.; van Marwijk, J.; Fenner, C.; Lewis, R.J.; Baldenius, K.; Marais, S.S.; Opperman, D.J.; Harrison, S.T.L.; Alcalde, M.; et al. A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2. Nat. Commu. 2019, 10, 4178. [Google Scholar] [CrossRef]
- Behrendorff, J.B.Y.H.; Huang, W.; Gillam, E.M.J. Directed evolution of cytochrome P450 enzymes for biocatalysis: Exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Biochem. J. 2015, 467, 1–15. [Google Scholar] [CrossRef] [Green Version]
CYP102A1 | kcat (min−1) | Km (μM) | kcat/Km (min−1 · μM−1) |
---|---|---|---|
whole M371 | 4.3 ± 0.3 | 52 ± 11 | 0.083 ± 0.018 |
M371-heme domain | 1.3 ± 0.2 | 106 ± 35 | 0.012 ± 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.H.H.; Yeom, S.-J.; Yun, C.-H. Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase. Appl. Sci. 2021, 11, 603. https://doi.org/10.3390/app11020603
Nguyen THH, Yeom S-J, Yun C-H. Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase. Applied Sciences. 2021; 11(2):603. https://doi.org/10.3390/app11020603
Chicago/Turabian StyleNguyen, Thi Huong Ha, Soo-Jin Yeom, and Chul-Ho Yun. 2021. "Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase" Applied Sciences 11, no. 2: 603. https://doi.org/10.3390/app11020603
APA StyleNguyen, T. H. H., Yeom, S. -J., & Yun, C. -H. (2021). Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase. Applied Sciences, 11(2), 603. https://doi.org/10.3390/app11020603