Effect of a Geothermal Heat Pump in Cooling Mode on the Housing Environment and Swine Productivity Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Experimental Design
2.3. Description of the GHP System
2.4. Internal House Temperature and Temperature–Humidity Index (THI)
2.5. Coefficient of Performance (COP) and the Heat Pump Outflow and Inflow Temperatures
2.6. Concentration of Ammonia (NH3) and Hydrogen Sulfide (H2S)
2.7. Formaldehyde (FA) and Particulate Matter (PM2.5)
2.8. Growth Performance Measurement
2.9. Statistics
3. Results
3.1. Pig House Temperature and THI
3.2. Heat Pump Outlet and Inlet Temperature and COP
3.3. Particulate Matter (PM2.5), Formaldehyde, NH3 and H2S Concentartions
3.4. Growth Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2008 Revision; Highlights United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2009. [Google Scholar]
- FAO World Livestock. Livestock in Food Security; FAO: Rome, Italy, 2011. [Google Scholar]
- Krommweh, M.S.; Rösmann, P.; Büscher, W. Investigation of Heating and Cooling Potential of a Modular Housing System for Fattening Pigs with Integrated Geothermal Heat Exchanger. Biosyst. Eng. 2014, 121, 118–129. [Google Scholar] [CrossRef]
- Islam, M.M.; Mun, H.-S.; Bostami, A.B.M.R.; Ahmed, S.T.; Park, K.-J.; Yang, C.-J. Evaluation of a Ground Source Geothermal Heat Pump to Save Energy and Reduce CO2 and Noxious Gas Emissions in a Pig House. Energy Build. 2016, 111, 446–454. [Google Scholar] [CrossRef]
- Licharz, H.; Rösmann, P.; Krommweh, M.S.; Mostafa, E.; Büscher, W. Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses. Energies 2020, 13, 662. [Google Scholar] [CrossRef] [Green Version]
- Costantino, A.; Fabrizio, E.; Ghiggini, A.; Bariani, M. Climate Control in Broiler Houses: A Thermal Model for the Calculation of the Energy Use and Indoor Environmental Conditions. Energy Build. 2018, 169, 110–126. [Google Scholar] [CrossRef]
- Choi, H.C.; Salim, H.M.; Akter, N.; Na, J.C.; Kang, H.K.; Kim, M.J.; Kim, D.W.; Bang, H.T.; Chae, H.S.; Suh, O.S. Effect of Heating System Using a Geothermal Heat Pump on the Production Performance and Housing Environment of Broiler Chickens. Poult. Sci. 2012, 91, 275–281. [Google Scholar] [CrossRef]
- Lund, R.; Ilic, D.D.; Trygg, L. Socioeconomic Potential for Introducing Large-Scale Heat Pumps in District Heating in Denmark. J. Clean. Prod. 2016, 139, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Chokchai, S.; Chotpantarat, S.; Takashima, I.; Uchida, Y.; Widiatmojo, A.; Yasukawa, K.; Charusiri, P. A Pilot Study on Geothermal Heat Pump (GHP) Use for Cooling Operations, and on GHP Site Selection in Tropical Regions Based on a Case Study in Thailand. Energies 2018, 11, 2356. [Google Scholar] [CrossRef] [Green Version]
- Majuri, P. Ground Source Heat Pumps and Environmental Policy—The Finnish Practitioner’s Point of View. J. Clean. Prod. 2016, 139, 740–749. [Google Scholar] [CrossRef]
- Benli, H.; Durmuş, A. Evaluation of Ground-Source Heat Pump Combined Latent Heat Storage System Performance in Greenhouse Heating. Energy Build. 2009, 41, 220–228. [Google Scholar] [CrossRef]
- Charoenvisal, K. Energy Performance and Economic Evaluations of the Geothermal Heat Pump System Used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2008. [Google Scholar]
- Lee, J.-Y. Current Status of Ground Source Heat Pumps in Korea. Renew. Sustain. Energy Rev. 2009, 13, 1560–1568. [Google Scholar] [CrossRef]
- Choi, H.C.; Park, J.H.; Song, J.I.; Na, J.C.; Kim, M.J.; Bang, H.T.; Kang, H.J.; Park, S.B.; Chae, H.S.; Suh, O.S.; et al. Evaluation on Heating Effects of Geothermal Heat Pump System in Farrowing House. J. Anim. Environ. Sci. 2010, 16, 205–215. [Google Scholar]
- Mun, H.S.; Dilawar, M.A.; Jeong, M.G.; Rathnayake, D.; Won, J.S.; Park, K.W.; Lee, S.R.; Ryu, S.B.; Yang, C.J. Effect of a Heating System Using a Ground Source Geothermal Heat Pump on Production Performance, Energy-Saving and Housing Environment of Pigs. Animals 2020, 10, 2075. [Google Scholar] [CrossRef]
- Adebiyi, O.A.; Muibi, M.A.; Alaba, O. Performance and Behavioural Characteristics of Pigs as Affected by Types and Duration of Evaporative Cooling. Niger. J. Anim. Sci. 2017, 2, 103–113. [Google Scholar]
- Hessel, E.F.; Zurhake, C. Heating and cooling performance of an under floor earth tube air tempering system in a mechanical ventilated farrowing house. In Proceedings of the XVII World Congress of the International Commission of Agricultural and Bio Systems Engineering (CIGR), Québec, QC, Canada, 13–17 June 2010. [Google Scholar]
- Li, S.; Ren, B.; Yang, H.; Yang, Y.; Ji, H.; Ni, J. Effect of Cold Stress with Different Intensities on HSP70 Expression in Wistar Rat Muscle, Spleen and Liver. Chin. J. Appl. Environ. Biol. 2006, 12, 235–238. [Google Scholar]
- Myer, R.; Bucklin, R. Influence of Hot-Humid Environment on Growth Performance and Reproduction of Swine. Document AN107, Extension, Institute of Food and Agricultural Sciences, 2001, University of Florida. Available online: http://edis.ifas.ufl.edu/an107 (accessed on 30 September 2021).
- Riva, G.; Pedretti, E.F.; Fabbri, C. Utilization of a heat pump in pig breeding for energy saving and climate and ammonia control. J. Agric. Eng. Res. 2000, 77, 449–455. [Google Scholar] [CrossRef]
- Choi, H.C.; Song, J.; Na, J.C.; Kim, M.J.; Bang, H.T.; Kang, H.G.; Park, S.B.; Chae, H.S.; Suh, O.S.; Yoo, Y.S.; et al. Evaluation on Cooling Effects of Geothermal Heat Pump System in Farrowing House. J. Anim. Environ. Sci. 2010, 16, 99–108. [Google Scholar]
- Mustafa Omer, A. Ground-Source Heat Pumps Systems and Applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Livestock Hot Weather Stress. Operations Manual Letter C-31-76; Department of Commerce, NOAA, National Weather Service Central Region: Kansas City, KA, USA, 1976.
- Man, Y.; Yang, H.; Wang, J.; Fang, Z. In Situ Operation Performance Test of Ground Coupled Heat Pump System for Cooling and Heating Provision in Temperate Zone. Appl. Energy 2012, 97, 913–920. [Google Scholar] [CrossRef]
- Aikins, K.A.; Choi, J.M. Current Status of the Performance of GSHP (Ground Source Heat Pump) Units in the Republic of Korea. Energy 2012, 47, 77–82. [Google Scholar] [CrossRef]
- Dilawar, M.A.; Saturno, J.F.L.; Mun, H.-S.; Kim, D.-H.; Jeong, M.-G.; Yang, C.-J. Influence of Two Plant Extracts on Broiler Performance, Oxidative Stability of Meat and Odorous Gas Emissions from Excreta. Ann. Anim. Sci. 2019, 19, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.-Q.; Heber, A.J.; Lim, T.-T. Ammonia and hydrogen sulfide in swine production. In Air Quality and Livestock Farming; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-73833-8. [Google Scholar]
- Cambra-López, M.; Hermosilla, T.; Lai, H.T.L.; Aarnink, A.J.A.; Ogink, N.W.M. Particulate Matter Emitted from Poultry and Pig Houses: Source Identification and Quantification. Trans. ASABE 2011, 54, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Kim, J.-E. Fine, Ultrafine, and Yellow Dust: Emerging Health Problems in Korea. J. Korean Med. Sci. 2014, 29, 621–622. [Google Scholar] [CrossRef] [Green Version]
- Subasi, N.T. Formaldehyde advantages and disadvantages: Usage Areas and Harmful E_ects on Human Beings. In Biochemical Toxicology-Heavy Materials and Nanomaterials; Ince, M., Kaplan Ince, O., Ondrasek, G., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Pulat, E.; Coskun, S.; Unlu, K.; Yamankaradeniz, N. Experimental Study of Horizontal Ground Source Heat Pump Performance for Mild Climate in Turkey. Energy 2009, 34, 1284–1295. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, S.W.; Weaver, M.A.; Lee, C.Y. Increasing the Pig Market Weight: World Trends, Expected Consequences and Practical Considerations. Asian-Australas. J. Anim. Sci. 2005, 18, 590–600. [Google Scholar] [CrossRef]
- Rauw, W.M.; Mayorga, E.J.; Lei, S.M.; Dekkers, J.C.M.; Patience, J.F.; Gabler, N.K.; Lonergan, S.M.; Baumgard, L.H. Effects of Diet and Genetics on Growth Performance of Pigs in Response to Repeated Exposure to Heat Stress. Front. Genet. 2017, 8, 155. [Google Scholar] [CrossRef] [Green Version]
Weaning Pigs 0–5 Weeks | Growing Pigs 5–9 Weeks | Finishing Pigs 10–19 Weeks | |
---|---|---|---|
Ingredients (% as fed basis) | |||
Yellow corn | 47.85 | 51.34 | 54.00 |
Rice bran | 14.00 | 7.00 | 9.00 |
Rapeseed oil | 0.00 | 1.72 | 3.00 |
DDGS | 0.00 | 6.00 | 6.00 |
Soybean meal | 22.10 | 21.80 | 18.00 |
Limestone | 0.70 | 0.86 | 1.00 |
Calcium Phosphate | 0.70 | 0.10 | 0.20 |
Salt | 0.15 | 0.30 | 0.30 |
Vit-min premix 1 | 0.50 | 0.45 | 0.20 |
Animal fat | 7.00 | 6.78 | 4.86 |
Molasses | 2.00 | 2.50 | 2.50 |
Amino Acid additive | 5.00 | 1.15 | 0.94 |
Analyzed composition (g/kg dry matter) | |||
Dry matter | 879 | 876 | 881 |
Crude protein | 190 | 180 | 170 |
Crude fat | 43 | 44 | 44 |
Crude fiber | 39 | 38 | 38 |
Ca | 7.0 | 8.0 | 8.0 |
Available P | 4.4 | 3.4 | 3.4 |
Lysine | 10.35 | 10.20 | 10.10 |
Methionine | 5.3 | 3.7 | 3.1 |
Items | Outside | Control | GHP | SEM | p-Value |
---|---|---|---|---|---|
Weaning | 28.70 | 25.85 | 25.32 | 0.21 | 0.0495 |
Growing | 27.31 | 24.31 | 23.85 | 0.21 | 0.2134 |
Early Finishing | 31.12 | 27.76 a | 22.93 b | 0.15 | <0.0001 |
Late Finishing | 26.49 | 22.20 a | 20.28 b | 0.17 | <0.0001 |
Average | 28.40 | 25.07 a | 23.84 b | 0.22 | <0.0001 |
Periods | Heat Pump Water Flow Temperature (°C) | Difference | Heat Pump Consumption (kWh) | COP | |
---|---|---|---|---|---|
Outflow | Inflow | ||||
Weaning | 26.11 | 33.55 | 7.44 | 44.80 | 4.10 |
Growing | 20.22 | 34.96 | 14.74 | 44.20 | 4.46 |
Early Finishing | 19.92 | 31.75 | 11.83 | 48.20 | 4.50 |
Late Finishing | 20.16 | 29.30 | 9.14 | 44.60 | 4.40 |
Average | 21.60 | 32.39 | 10.79 | 45.45 | 4.36 |
Items | Control | GHP | SEM | p-Value |
---|---|---|---|---|
Particulate matter (PM2.5 µg/m3) | ||||
Weaning | 22.51 | 21.86 | 2.44 | 0.8610 |
Growing | 16.25 | 15.32 | 2.39 | 0.7932 |
Early Finishing | 34.17 | 31.97 | 4.90 | 0.7514 |
Late finishing | 25.49 | 24.94 | 3.67 | 0.9223 |
Average | 25.05 | 24.07 | 1.90 | 0.7163 |
Formaldehyde (ppm) | ||||
Weaning | 0.07 | 0.10 | 0.01 | 0.0611 |
Growing | 0.08 | 0.10 | 0.01 | 0.2638 |
Early Finishing | 0.11 a | 0.05 b | 0.02 | 0.0431 |
Late Finishing | 0.08 | 0.13 | 0.01 | 0.0595 |
Average | 0.09 | 0.09 | 0.01 | 0.5051 |
Hydrogen sulfide (ppb) | ||||
Weaning | 13.00 a | 0.14 b | 0.01 | 0.0002 |
Growing | 7.00 a | 0.03 b | 0.02 | 0.0325 |
Early Finishing | 5.00 a | 1.28 b | 0.01 | 0.0199 |
Late Finishing | 16.00 a | 0.21 b | 0.10 | 0.0341 |
Average | 10.00 a | 0.44 b | 0.01 | 0.0011 |
Parameter | Control | GHP | SEM | p Value |
---|---|---|---|---|
0–5 weeks | ||||
Initial body weight (kg) | 6.18 | 6.17 | 0.37 | 0.9910 |
Final body weight (kg) | 23.74 | 25.84 | 0.88 | 0.1250 |
Weight gain (kg) | 17.56 | 19.67 | 0.77 | 0.0850 |
Feed intake (kg) | 26.60 b | 31.10 a | 1.26 | 0.0350 |
Feed conversion ratio | 1.52 | 1.59 | 0.06 | 0.4390 |
6–9 weeks | ||||
Final body weight (kg) | 48.53 | 51.35 | 1.66 | 0.2490 |
Weight gain (kg) | 24.79 | 25.51 | 0.91 | 0.7250 |
Feed intake (kg) | 51.83 b | 52.71 a | 2.21 | 0.0005 |
Feed conversion ratio | 2.11 | 2.07 | 0.05 | 0.6700 |
10–14 weeks | ||||
Final body weight (kg) | 75.61 b | 82.58 a | 1.88 | 0.0220 |
Weight gain (kg) | 27.09 | 31.23 | 1.01 | 0.0840 |
Feed intake (kg) | 81.29 b | 91.62 a | 2.42 | 0.0140 |
Feed conversion ratio | 3.03 | 2.94 | 0.14 | 0.8210 |
15–19 weeks | ||||
Final body weight (kg) | 108.47 b | 118.17 a | 2.56 | 0.0240 |
Weight gain (kg) | 32.86 | 35.58 | 0.82 | 0.2760 |
Feed intake (kg) | 101.16 b | 120.53 a | 2.76 | 0.0008 |
Feed conversion ratio | 3.10 b | 3.39 a | 0.13 | 0.0280 |
0–19 weeks | ||||
Final body weight (kg) | 108.47 b | 118.17 a | 2.56 | 0.0240 |
Weight gain (kg) | 102.29 b | 111.99 a | 2.47 | 0.0170 |
Feed intake (kg) | 260.88 | 295.96 | 6.96 | 0.0780 |
Feed conversion ratio | 2.56 | 2.64 | 0.05 | 0.4390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mun, H.-S.; Dilawar, M.A.; Rathnayake, D.; Chung, I.-B.; Kim, C.-D.; Ryu, S.-B.; Park, K.-W.; Lee, S.-R.; Yang, C.-J. Effect of a Geothermal Heat Pump in Cooling Mode on the Housing Environment and Swine Productivity Traits. Appl. Sci. 2021, 11, 10778. https://doi.org/10.3390/app112210778
Mun H-S, Dilawar MA, Rathnayake D, Chung I-B, Kim C-D, Ryu S-B, Park K-W, Lee S-R, Yang C-J. Effect of a Geothermal Heat Pump in Cooling Mode on the Housing Environment and Swine Productivity Traits. Applied Sciences. 2021; 11(22):10778. https://doi.org/10.3390/app112210778
Chicago/Turabian StyleMun, Hong-Seok, Muhammad Ammar Dilawar, Dhanushka Rathnayake, Il-Byung Chung, Chong-Dae Kim, Sang-Bum Ryu, Kwang-Woo Park, Sang-Ro Lee, and Chul-Ju Yang. 2021. "Effect of a Geothermal Heat Pump in Cooling Mode on the Housing Environment and Swine Productivity Traits" Applied Sciences 11, no. 22: 10778. https://doi.org/10.3390/app112210778
APA StyleMun, H. -S., Dilawar, M. A., Rathnayake, D., Chung, I. -B., Kim, C. -D., Ryu, S. -B., Park, K. -W., Lee, S. -R., & Yang, C. -J. (2021). Effect of a Geothermal Heat Pump in Cooling Mode on the Housing Environment and Swine Productivity Traits. Applied Sciences, 11(22), 10778. https://doi.org/10.3390/app112210778