Abnormal Strain Induced by Heavy Rainfall on Borehole Strainmeters Observed in Taiwan
Abstract
:1. Introduction
2. Strain Transformation and Instrument Coupling
3. Effects of Rainfall and Groundwater on the Strain
4. Data and Calculation
- First, convert the original data recorded by the borehole strainmeter into the actual deformation base on the prior calibration results.
- Second, remove the responses of air pressure, tides, and borehole-curing to obtain the residual strain.
- Then, according to the rainfall records, select the strain data corresponding to the heavy rainfall time in the residual strain, and try to use a recursive digital filter to separate the quick and slow response caused by rainfall.
- Calculate the deconvolution results of RQR and rainfall to obtain the rainfall impact function, which shows the strain–time curve of every falling rainwater unit before flowing away.
- After an event finished, we went to check the next rainfall event, and repeated the steps described above.
5. Results
6. Discussions
6.1. External Factors Influencing the Rainfall-Induced Response at DARB
6.2. The Influence of Vertical Coupling in Rainfall and Barometric Responses
6.3. Comparison of the Effect of Barometric Pressure and Rainfall
6.4. Impact of Additional River Load on the Observed Strain
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gladwin, M.T.; Gwyther, R.L.; Higbie, J.W.; Hart, R.G. A medium term precursor to the Loma Prieta Earthquake? Geophys. Res. Lett. 1991, 18, 1377–1380. [Google Scholar] [CrossRef]
- Luttrell, K.M.; Mencin, D.; Francis, O.; Hurwitz, S. Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake-seiche induced strain observations. Geophys. Res. Lett. 2013, 40, 501–506. [Google Scholar] [CrossRef]
- Wech, A.; Bartlow, N.M. Slip rate and tremor genesis in Cascadia. Geophys. Res. Lett. 2014, 41, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Barbour, A.J.; Agnew, D.C.; Wyatt, F.K. Coseismic Strains on Plate Boundary Observatory Borehole Strainmeters in Southern California. Bull. Seism. Soc. Am. 2014, 105, 431–444. [Google Scholar] [CrossRef]
- Hsu, Y.-J.; Chang, Y.-S.; Liu, C.-C.; Lee, H.-M.; Linde, A.T.; Sacks, S.I.; Kitagawa, G.; Chen, Y.-G. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes. J. Geophys. Res. Solid Earth 2015, 120, 4556–4571. [Google Scholar] [CrossRef]
- Liu, C.; Linde, A.T.; Sacks, I.S. Erratum: Slow earthquakes triggered by typhoons. Nat. Cell Biol. 2009, 460, 292. [Google Scholar] [CrossRef] [Green Version]
- Mouyen, M.; Canitano, A.; Chao, B.F.; Hsu, Y.J.; Steer, P.; Longuevergne, L.; Boy, J.P. Typhoon-Induced Ground Deformation. Geophys. Res. Lett. 2017, 44, 2017GL075615. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Jeng, F. Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan—Typhoon Herb. Eng. Geol. 2000, 58, 191–207. [Google Scholar] [CrossRef]
- Lo, C.-M.; Lin, M.-L.; Tang, C.-L.; Hu, J.-C. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng. Geol. 2011, 123, 22–39. [Google Scholar] [CrossRef]
- Lin, K.-C.; Hu, J.; Ching, K.-E.; Angelier, J.; Rau, R.-J.; Yu, S.-B.; Tsai, C.-H.; Shin, T.-C.; Huang, M.-H. GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Seno, T.; Stein, S.; Gripp, A.E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J. Geophys. Res. 1993, 98, 941–948. [Google Scholar] [CrossRef]
- Seno, T. The instantaneous rotation vector of the Philippine sea plate relative to the Eurasian plate. Tectonophysics 1977, 42, 209–226. [Google Scholar] [CrossRef]
- Yu, S.-B.; Kuo, L.-C.; Punongbayan, R.S.; Ramos, E.G. GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophys. Res. Lett. 1999, 26, 923–926. [Google Scholar] [CrossRef]
- Zang, S.; Chen, Q.Y.; Ning, J.Y.; Shen, Z.K.; Liu, Y.G. Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophys. J. Int. 2002, 150, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.; Suppe, J.; Dahlen, F.A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Space Phys. 1983, 88, 1153–1172. [Google Scholar] [CrossRef]
- Dahlen, F.A. Critical Taper Model of Fold-And-Thrust Belts and Accretionary Wedges. Annu. Rev. Earth Planet. Sci. 1990, 18, 55–99. [Google Scholar] [CrossRef]
- Mouthereau, F.; Lacombe, O. Inversion of the Paleogene Chinese continental margin and thick-skinned deformation in the Western Foreland of Taiwan. J. Struct. Geol. 2006, 28, 1977–1993. [Google Scholar] [CrossRef]
- Suppe, J. Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China 1981, 4, 67–89. [Google Scholar]
- Huang, Y.T.; Chen, K.H.; Yang, M. Estimation of Taiwan Vertical Velocity Field Using TWVD2001 Leveling Data. J. Taiwan Land Res. 2000, 13, 28. [Google Scholar]
- Ho, C. A synthesis of the geologic evolution of Taiwan. Tectonophysics 1986, 125, 1–16. [Google Scholar] [CrossRef]
- Dadson, S.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.-L.; Willett, S.D.; Hu, J.-C.; Horng, M.-J.; Chen, M.-C.; Stark, C.P.; et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nat. Cell Biol. 2003, 426, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H. Denudation of Taiwan Island since the Pliocene Epoch. Geology 1976, 4, 105–107. [Google Scholar] [CrossRef]
- Tang, C.-L.; Hu, J.-C.; Lin, M.-L.; Angelier, J.; Lu, C.-Y.; Chan, Y.-C.; Chu, H.-T. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation. Eng. Geol. 2009, 106, 1–19. [Google Scholar] [CrossRef]
- Cook, K.L.; Turowski, J.M.; Hovius, N. River gorge eradication by downstream sweep erosion. Nat. Geosci. 2014, 7, 682–686. [Google Scholar] [CrossRef]
- Angelier, J.; Lee, J.-C.; Chu, H.-T.; Hu, J.-C. Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning. J. Struct. Geol. 2003, 25, 345–350. [Google Scholar] [CrossRef]
- Chang, C.-P.; Chang, T.-Y.; Angelier, J.; Kao, H.; Lee, J.-C.; Yu, S.-B. Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data. Earth Planet. Sci. Lett. 2003, 214, 115–127. [Google Scholar] [CrossRef]
- Hu, J.; Hou, C.-S.; Shen, L.-C.; Chan, Y.-C.; Chen, R.-F.; Huang, C.; Rau, R.-J.; Chen, K.H.-H.; Lin, C.-W.; Huang, M.-H.; et al. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci. 2007, 31, 287–302. [Google Scholar] [CrossRef]
- Huang, M.-H.; Hu, J.; Hsieh, C.-S.; Ching, K.-E.; Rau, R.-J.; Pathier, E.; Fruneau, B.; Benoît, D. A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Loevenbruck, A.; Cattina, R.; Le Pichon, X.; Courty, M.-L.; Yu, S.-B. Seismic cycle in Taiwan derived from GPS measurements. Comptes Rendus l’Académie Sci.-Series IIA-Earth Planet. Sci. 2001, 333, 57–64. [Google Scholar] [CrossRef]
- Pearson, C.F.; Beavan, J.; Darby, D.J.; Blick, G.H.; Walcott, R.I. Strain distribution across the Australian-Pacific plate boundary in the central South Island, New Zealand, from 1992 GPS and earlier terrestrial observations. J. Geophys. Res. Space Phys. 1995, 100, 22071–22081. [Google Scholar] [CrossRef]
- Savage, J.; Lisowski, M. Strain accumulation in Owens Valley, California, 1974 to 1988. Bull. Seismol. Soc. Am. 1995, 85, 151–158. [Google Scholar]
- Gladwin, M.T.; Hart, R. Design parameters for borehole strain instrumentation. Pure Appl. Geophys. PAGEOPH 1985, 123, 59–80. [Google Scholar] [CrossRef]
- Johnston, M.J.S.; Linde, A.T.; Sacks, I.; Myren, D. Borehole dilatometer strain array—Installation and preliminary results from the Mojave desert. EOS 1982, 63, 430. [Google Scholar]
- Matsumoto, N. Regression analysis for anomalous changes of ground water level due to earthquakes. Geophys. Res. Lett. 1992, 19, 1193–1196. [Google Scholar] [CrossRef]
- Roeloffs, E. Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena. Adv. Geophys. 1996, 37, 135–195. [Google Scholar] [CrossRef]
- Rojstaczer, S. Intermediate period response of water levels in wells to crustal strain: Sensitivity and noise level. J. Geophys. Res. Space Phys. 1988, 93, 13619–13634. [Google Scholar] [CrossRef] [Green Version]
- Wakita, H. Water Wells as Possible Indicators of Tectonic Strain. Science 1975, 189, 553–555. [Google Scholar] [CrossRef]
- Rice, J.R.; Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 1976, 14, 227–241. [Google Scholar] [CrossRef]
- Hodgkinson, K.; Langbein, J.; Henderson, B.; Mencin, D.; Borsa, A. Tidal calibration of plate boundary observatory borehole strainmeters. J. Geophys. Res. Solid Earth 2013, 18, 447–458. [Google Scholar] [CrossRef]
- Roeloffs, E. Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling. J. Geophys. Res. Space Phys. 2010, 115, 25. [Google Scholar] [CrossRef]
- Hart, R.H.G.; Gladwin, M.T.; Gwyther, R.L.; Agnew, D.C.; Wyatt, F.K. Tidal calibration of borehole strain meters: Removing the effects of small-scale inhomogeneity. J. Geophys. Res. Space Phys. 1996, 101, 25553–25571. [Google Scholar] [CrossRef]
- Segall, P.; Jónsson, S.; Ágústsson, K. When is the strain in the meter the same as the strain in the rock? Geophys. Res. Lett. 2003, 30, 1990. [Google Scholar] [CrossRef] [Green Version]
- Lynn, P. An Introduction to the Analysis and Processing of Signals, 3rd ed.; Macmillan Education Ltd.: London, UK, 1973. [Google Scholar]
- Agnew, D.C. SPOTL: Some Programs for Ocean-Tide Loading; SIO Technical Report; Scripps Institution of Oceanography: La Jolla, CA, USA, 2012. [Google Scholar]
- Matsumoto, K.; Sato, T.; Takanezawa, T.; Ooe, M. GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect. J. Geod. Soc. Jpn. 2001, 47, 243–248. [Google Scholar]
- Hu, C.-K.; Chiu, C.-T.; Chen, S.-H.; Kuo, J.-Y.; Jan, S.; Tseng, Y. Numerical Simulation of Barotropic Tides around Taiwan. Terr. Atmos. Ocean. Sci. 2010, 21, 71. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Sato, T.; Ooe, M.; Ishiguro, M. A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int. 1991, 104, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Evett, S.R.; Dutt, G.R. Length and Slope Effects on Runoff from Sodium Dispersed, Compacted Earth Microcatchments. Soil Sci. Soc. Am. J. 1985, 49, 734–738. [Google Scholar] [CrossRef]
- White, A.B.; Kumar, P.; Saco, P.M.; Rhoads, B.L.; Yen, B.C. Hydrodynamic and geomorphologic dispersion: Scale effects in the Illinois River Basin. J. Hydrol. 2004, 288, 237–257. [Google Scholar] [CrossRef]
- Michel, C.; Perrin, C.; Andréassian, V. The exponential store: A correct formulation for rainfall—runoff modelling. Hydrol. Sci. J. 2003, 48, 109–124. [Google Scholar] [CrossRef]
- Moore, R.J.; Clarke, R.T. A distribution function approach to rainfall runoff modeling. Water Resour. Res. 1981, 17, 1367–1382. [Google Scholar] [CrossRef]
- Jan, C.-D.; Chen, T.-H.; Lo, W.-C. Effect of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol. 2007, 332, 348–360. [Google Scholar] [CrossRef]
- Jan, C.-D.; Chen, T.-H.; Huang, H.-M. Analysis of rainfall-induced quick groundwater-level response by using a Kernel function. Paddy Water Environ. 2011, 11, 135–144. [Google Scholar] [CrossRef]
- Smith, M. The Influence of Surface Roughness on Runoff Generation and Soil Erosion in Semi-Arid Environments; Durham University: Durham, UK, 2005. [Google Scholar]
- Hobson, R.D. Surface Roughness in Topography: Quantitative Approach; Routledge: Methuen, MA, USA; London, UK, 1972. [Google Scholar]
- Engman, E.T. Roughness Coefficients for Routing Surface Runoff. J. Irrig. Drain. Eng. 1986, 112, 39–53. [Google Scholar] [CrossRef]
- Casenave, A.; Valentin, C. A runoff capability classification system based on surface features criteria in semi-arid areas of West Africa. J. Hydrol. 1992, 130, 231–249. [Google Scholar] [CrossRef]
- Qiu, Z.; Guo, Y.; Tang, L.; Zhang, B. In situ calibration of and algorithm for strain monitoring using four-gauge borehole strainmeters (FGBS). J. Geophys. Res. Solid Earth 2013, 118, 1609–1618. [Google Scholar] [CrossRef]
- Langbein, J. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration. J. Geophys. Res. Solid Earth 2015, 120, 7190–7202. [Google Scholar] [CrossRef] [Green Version]
- Canitano, A.; Hsu, Y.-J.; Lee, H.-M.; Linde, A.T.; Sacks, S. Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling. J. Geod. 2017, 92, 223–240. [Google Scholar] [CrossRef]
- Das, B.M.; Sobhan, K. Principles of Geotechnical Engineering, 7th ed.; PWS Engineering: Boston, MA, USA; Cengage: Stamford, CT, USA, 2011. [Google Scholar]
Station | Coordinates (WGS84) | Altitude (m) | BSM Model | Surrounding Environment | Sampling Period | |||
---|---|---|---|---|---|---|---|---|
X | Y | Installing Depth/Drilling Depth (m) | Rock Type and Age | Environment Sketch | ||||
JING | 121.480 | 24.993 | 19 | GTSM21 | 191/200 | Shale with some sandstone layers, Early Miocene | Plain/low terrain, Edge of the Taipei Basin | 2010/6–2011/12 |
SANS | 121.356 | 24.993 | 80 | GTSM21 | 200/200 | Sandstone, Early Pliocene | Plain/low terrain, Edge of a river plain | 2008/4/1–2014/6/30 |
CINT | 121.242 | 24.732 | 505.2 | GTSM21 | 198.1/200 | sandstone, Middle Miocene | Hill/mountain, North band of the Youluo River in the Jianshi Township, Hsinchu County | 2008/11–2012/6 |
PFMT | 121.201 | 24.679 | 496 | GTSM21 | 165/200 | Sandstone, Middle Miocene | Hill/mountain, On a hill slope | 2010/1/1–2012/6/30 |
BMMT | 121.050 | 24.676 | 195 | GTSM21 | 200/200 | Sandstone, Late Miocene | Hill/mountain, Low terrace in the south of the Beipu Township, Hsinchu County | 206/1–2008/12 |
TAIS | 120.627 | 23.543 | 790 | GTSM21 | 199.7/200 | Alternation of sandstone and mudstone, Late Miocene | Hill/mountain, Mountain area | 2010/6/30–2012/6/30 |
TSUN | 120.689 | 23.478 | 1370 | GTSM21 | 195.6/200 | Shale with some sandstone layers, Late Miocene | Hill/mountain, Mountain area | 2007/1/1–2012/6/30 |
DARB | 120.741 | 23.456 | 952.8 | GTSM21 | 198.9/200 | muddy sandstone, Late Miocene | Hill/mountain, Upstream of the Zengwun River in the Dabang Village, Chiayi County | 2007/4–2012/1 |
RNT | 120.698 | 23.328 | 252 | GTSM100 | 199/200 | Siltstone, Late Miocene to early Pliocene | Hill/mountain, Besides the Tsengwen Reservoir | 2012/9/11–2014/4/30 |
RST | 120.501 | 23.236 | 110 | GTSM100 | 224.2/225 | Siltstone, Late Miocene | Hill/mountain, In the downstream of Tsengwen Reservoir | 2010/1/1–2014/10/1 |
BSM | Fitted Kernel Curve Parameters | Time to Decay to 10% of Max. Response, Hr | Terrain Roughness of Vicinity of BSM | ||
---|---|---|---|---|---|
α | β | ki | |||
JING | −8.80 × 10−10 | 0.045 | 1 | 26.5 | 1.02 |
SANS | −2.03 × 10−10 | 0.012 | 1 | 95 | 1.03 |
CINT | −2.97 × 10−10 | 0.013 | 1 | 93 | 1.28 |
PFMT | −6.56 × 10−10 | 0.036 | 1 | 33 | 1.11 |
BMMT | −5.23 × 10−10 | 0.025 | 1 | 47 | 1.13 |
TAIS | −7.80 × 10−10 | 0.007 | 1 | 178 | 1.16 |
TSUN | −4.15 × 10−10 | 0.008 | 1 | 140 | 1.14 |
DARB | −1.53 × 10−10 | 0.011 | 1 | 105 | 1.21 |
RNT | −1.22 × 10−10 | 0.022 | 1 | 53 | 1.19 |
RST | −7.58 × 10−11 | 0.028 | 1 | 42 | 1.18 |
Station | Barometric Response Strain Nstrain/HPa | Maximum Rainfall Response Nstrain/HPa | Uni-Axial Strength, MPa | Young’s Modulus of Elasticity, GPa | |
---|---|---|---|---|---|
Areal | Calibrated Areal | ||||
JING | −26.1 | −10.12 | −8.80 | 23.9 | 5.40 |
SANS | −74.0 | −2.01 | −2.03 | 36.8 | 5.52 |
CINT | −28.5 | −2.93 | −2.97 | 69.4 | 9.50 |
PFMT | −14.2 | −6.06 | −6.56 | 52.6 | 6.17 |
BMMT | −25.8 | −5.89 | −5.23 | 7.4 | 0.82 |
TAIS | −32.7 | −8.50 | −7.80 | 30.1 | 3.56 |
TSUN | −30.5 | −4.36 | −4.15 | 94.2 | 8.75 |
DARB | −40.7 | −1.64 | −1.53 | 34.1 | 4.25 |
RNT | −5.3 | −0.88 | −1.22 | 33.9 | 4.25 |
RST | −10.0 | −0.92 | −0.76 | 52.8 | 4.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Hu, J.-C.; Liu, C.-C.; Chiu, C.-Y. Abnormal Strain Induced by Heavy Rainfall on Borehole Strainmeters Observed in Taiwan. Appl. Sci. 2021, 11, 1301. https://doi.org/10.3390/app11031301
Chen C-Y, Hu J-C, Liu C-C, Chiu C-Y. Abnormal Strain Induced by Heavy Rainfall on Borehole Strainmeters Observed in Taiwan. Applied Sciences. 2021; 11(3):1301. https://doi.org/10.3390/app11031301
Chicago/Turabian StyleChen, Chih-Yen, Jyr-Ching Hu, Chi-Ching Liu, and Chun-Ying Chiu. 2021. "Abnormal Strain Induced by Heavy Rainfall on Borehole Strainmeters Observed in Taiwan" Applied Sciences 11, no. 3: 1301. https://doi.org/10.3390/app11031301
APA StyleChen, C. -Y., Hu, J. -C., Liu, C. -C., & Chiu, C. -Y. (2021). Abnormal Strain Induced by Heavy Rainfall on Borehole Strainmeters Observed in Taiwan. Applied Sciences, 11(3), 1301. https://doi.org/10.3390/app11031301