Optimization of Reinforced Concrete Sections under Compression and Biaxial Bending by Using a Parallel Firefly Algorithm
Abstract
:1. Introduction
2. Optimization of Concrete Rectangular Cross-Sections
2.1. Optimum Design Problem
2.2. Variables
2.3. Fitness Function
2.4. Objective Function
2.5. Constraints
2.5.1. Reinforcement Constraints
2.5.2. Ductility Constraint
2.5.3. Steel Reinforcement Spacing Constraints
2.5.4. Strength Constraints
2.6. Optimization Methodology
2.6.1. Firefly Algorithm (FA)
- (i)
- All the fireflies in a population have just one gender and any of them can be attracted to another.
- (ii)
- The attraction between two fireflies in the whole population is directly proportional to the brightness of their luminescence. This attraction lessens when distances increase. Observing a pair of fireflies, the less bright one moves toward the brighter one.
- (iii)
- The brightness of a specific firefly is linked to the value of its fitness function.
2.6.2. Modified Version (MPFA) of the Firefly Algorithm
- (i)
- Parallelization and migration.
- (ii)
- Small random displacements.
3. Examples
3.1. Cross-Section under Flexure
3.2. Cross-Section under Biaxial Bending
4. Conclusions and Final Remarks
- (i)
- The speed-up increases as more parallel processes are considered. The trend is almost linear up to six parallel processes. From six onwards, there is no significant increase. It can also be seen that the efficiency quickly drops with more than four parallel processes. These results depend on the computer used to run the calculations but not on the proposed design method. To achieve better results, using another computer whose architecture allows more processes in parallel would be sufficient.
- (ii)
- The method achieves designs close to the global optimum despite the number of parallel processes considered. Small random displacements (LSRD and GSRD) have proven to be essential to avoiding the bias produced by the migration between subpopulations. LSRD shows its effect when there are few subpopulations of many individuals. In contrast, GSRD shows its effect when there are many subpopulations with few individuals. The combined use of LSRD and GSRD slightly improves the results and reduces their sensitivity in relation to the number of parallel processes considered. It should be noted that the proposed method was tested considering only up to 16 parallel processes (or 16 subpopulations). More research should be done considering more parallel processes. To facilitate this task for other potential researchers or for other uses, the authors included the MATLAB® code for the complete method in the Appendix A.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, X.-S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Anbor, MI, USA, 1975. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Kunnath, S.K.; Reinhorn, A.M.; Abel, J.F. A computational tool for evaluation of seismic performance of reinforced concrete buildings. Comput. Struct. 1991, 41, 157–173. [Google Scholar] [CrossRef]
- Carbonell, A.; González-Vidosa, F.; Yepes, V. Design of reinforced concrete road vaults by heuristic optimization. Adv. Eng. Softw. 2011, 42, 151–159. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Liu, Z.; Wang, R. A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation. Mech. Syst. Signal Process. 2021, 151, 107336. [Google Scholar] [CrossRef]
- Kondratova, I.L.; Montes, P.; Bremner, T.W. Natural marine exposure results for reinforced concrete slabs with corrosion inhibitors. Cem. Concr. Compos. 2003, 25, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Padhy, N.P. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 2008, 8, 1418–1427. [Google Scholar] [CrossRef]
- Artale, V.; Milazzo, C.L.R.; Orlando, C.; Ricciardello, A. Comparison of GA and PSO approaches for the direct and LQR tuning of a multirotor PD controller. Am. Inst. Math. Sci. 2017, 13, 2067–2091. [Google Scholar] [CrossRef]
- Valvano, S.; Orlando, C.; Alaimo, A. Design of a noise reduction passive control system based on viscoelastic multilayered plate using PDSO. Mech. Syst. Signal Process. 2019, 123, 153–173. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792, pp. 169–178. [Google Scholar]
- Gandomi, A.H.; Yang, X.-S.; Talatahari, S.; Alavi, A.H. Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 89–98. [Google Scholar] [CrossRef]
- Fister, I., Jr.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using Firefly Algorithm. Comput. Struct. 2011, 89, 2325–2336. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Kashani, A.R.; Roke, D.A.; Mousavi, M. Optimization of retaining wall design using recent swarm intelligence techniques. Eng. Struct. 2015, 103, 72–84. [Google Scholar] [CrossRef]
- Talatahari, S.; Gandomi, A.H.; Yun, G.J. Optimum design of tower structures using Firefly Algorithm. Struct. Des. Tall Spéc. Build. 2012, 23, 350–361. [Google Scholar] [CrossRef]
- Akin, A.; Saka, M.P. Optimum detailing design of reinforced concrete plane frames to ACI318-05 using the harmony search algorithm. In Proceedings of the Eleventh International Conference on Computational Structures Technology, Paper 72, Dubrovnik, Croatia, 4–7 September 2012; Topping, B.H.V., Ed.; Civil Comp Press: Stirlingshire, UK, 2012. [Google Scholar] [CrossRef]
- Akin, A.; Saka, M.P. Harmony search algorithm based optimum detailing design of reinforced concrete plane frames subject to ACI318-05 provisions. Comput. Struct. 2015, 147, 79–95. [Google Scholar] [CrossRef]
- Nilson, A.H.; Darwin, D.; Dolan, C.W. Design of Concrete Structures, 14th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Sahab, M.G.; Toropov, V.V.; Gandomi, A.H. A review on traditional and modern structural optimization: Problems and techniques. In Metaheuristic Applications in Structures and Infrastructures; Elsevier Inc.: London, UK, 2013; pp. 25–47. [Google Scholar]
- Thierauf, G.; Cai, J. Parallel evolution strategy for solving structural optimization. Eng. Struct. 1997, 19, 318–324. [Google Scholar] [CrossRef]
- Leite, J.P.B.; Topping, B.H.V. Parallel simulated annealing for structural optimization. Comput. Struct. 1999, 73, 545–564. [Google Scholar] [CrossRef]
- Hasanҫebi, O.; Bahҫecioǧlu, T.; Kurҫ, Ö.; Saka, M.P. Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm. Comput. Struct. 2011, 89, 2037–2051. [Google Scholar] [CrossRef]
- Truong, V.H.; Nguyen, P.C.; Kim, S.E. An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the micro-genetic algorithm. J. Constr. Steel Res. 2017, 128, 416–427. [Google Scholar] [CrossRef]
- Sánchez-Olivares, G.; Tomás, A. Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending. Eng. Struct. 2017, 130, 162–179. [Google Scholar] [CrossRef]
- Technical Committee CEN/TC250. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; (EN 1992-1-1:2004/A1:2014); European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary; (ACI CODE-318-19); American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Talbi, E. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- MATLAB® Primer (R2014a); The MathWorks, Inc.: Natick, MA, USA, 2014.
- Gomes, G.M.; Esposito, A. A Parallelised Firefly Algorithm for Structural Size and Shape Optimization with Multimodal Constraints. In Cuckoo Search and Firefly Algorithm; Theory and Applications, Studies in Computational Intelligence, 516; Springer: London, UK, 2014; pp. 291–314. [Google Scholar]
- Gil-Martín, L.M.; Hernández-Montes, E.; Aschheim, M. Optimal reinforcement of RC columns for biaxial bending. Mater. Struct. 2010, 43, 1245–1256. [Google Scholar] [CrossRef]
ACI318 | EC2 | |
---|---|---|
z(mm) | 152.3 | 136.3 |
θ(rad) | 0 | 0 |
b(mm) | 300 | 325 |
h(mm) | 585 | 605 |
φ’x(mm) | 10 | 10 |
n’x | 2 | 4 |
φx(mm) | 32 | 20 |
nx | 3 | 6 |
Cost (€/m) | 85.54 | 86.19 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 85.81 | 0.9969 | 0.51 |
2 | 85.83 | 0.9966 | 0.52 |
3 | 85.78 | 0.9972 | 0.76 |
4 | 85.68 | 0.9984 | 0.35 |
5 | 85.86 | 0.9963 | 0.81 |
6 | 85.68 | 0.9983 | 0.36 |
7 | 85.76 | 0.9974 | 0.47 |
8 | 85.98 | 0.9949 | 0.95 |
9 | 86.26 | 0.9917 | 1.32 |
10 | 85.94 | 0.9953 | 0.99 |
11 | 86.52 | 0.9887 | 1.49 |
12 | 86.35 | 0.9906 | 1.72 |
13 | 86.84 | 0.9851 | 1.90 |
14 | 87.05 | 0.9827 | 1.94 |
15 | 88.02 | 0.9719 | 2.40 |
16 | 87.98 | 0.9723 | 2.68 |
Averaged value | 86.33 | 0.9909 | 1.20 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 85.81 | 0.9969 | 0.51 |
2 | 86.08 | 0.9937 | 0.66 |
3 | 85.93 | 0.9955 | 0.62 |
4 | 85.73 | 0.9978 | 0.43 |
5 | 85.74 | 0.9976 | 0.45 |
6 | 85.74 | 0.9976 | 0.46 |
7 | 85.90 | 0.9958 | 1.04 |
8 | 85.76 | 0.9974 | 0.47 |
9 | 86.18 | 0.9926 | 1.96 |
10 | 85.79 | 0.9971 | 0.75 |
11 | 86.04 | 0.9941 | 1.08 |
12 | 85.80 | 0.9969 | 0.51 |
13 | 86.22 | 0.9921 | 1.22 |
14 | 85.89 | 0.9959 | 0.82 |
15 | 86.66 | 0.9871 | 2.22 |
16 | 86.33 | 0.9908 | 1.34 |
Averaged value | 85.98 | 0.9949 | 0.91 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 85.81 | 0.9969 | 0.51 |
2 | 85.73 | 0.9977 | 0.43 |
3 | 85.71 | 0.9980 | 0.39 |
4 | 85.73 | 0.9978 | 0.43 |
5 | 85.73 | 0.9978 | 0.41 |
6 | 85.65 | 0.9988 | 0.27 |
7 | 85.71 | 0.9980 | 0.37 |
8 | 85.81 | 0.9968 | 0.51 |
9 | 85.99 | 0.9947 | 1.05 |
10 | 86.24 | 0.9918 | 1.43 |
11 | 85.85 | 0.9964 | 0.62 |
12 | 85.96 | 0.9951 | 0.99 |
13 | 86.06 | 0.9939 | 0.94 |
14 | 86.20 | 0.9923 | 1.20 |
15 | 86.32 | 0.9910 | 1.51 |
16 | 86.29 | 0.9914 | 1.38 |
Averaged value | 85.93 | 0.9955 | 0.78 |
Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|
φ’y = φy = φ’x = φx n’y = ny n’x = nx | φ’y = φy φ’x = φx n’y = ny n’x = nx | |||
Gil-Martín et al. [35] | MPFA | MPFA | MPFA | |
z(mm) | - | 251.8 | 216.3 | 263.2 |
θ(rad) | - | 1.0819 | 1.2200 | 1.2041 |
b(mm) | 400 | 400 | 400 | 400 |
h(mm) | 700 | 700 | 700 | 700 |
φ’y(mm) | 14.4 | 20 | 10 | - |
n’y | 6 | 5 | 5 | - |
φy(mm) | 14.4 | 20 | 10 | 14 |
ny | 6 | 5 | 5 | 10 |
φ’x(mm) | 14.4 | 20 | 32 | 10 |
n’x | 8 | 2 | 2 | 2 |
φx(mm) | 14.4 | 20 | 32 | 14 |
nx | 8 | 2 | 2 | 8 |
Ast(mm2) | 4560.1 | 4398.2 | 4002.4 | 2928.0 |
Relative Ast (%) | 103.7 | 100.0 | 91.0 | 66.6 |
Cost (€/m) | 103.5 | 102.0 | 98.3 | 88.3 |
Relative cost (%) | 101.5 | 100.0 | 96.4 | 86.6 |
Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|
φ’y = φy = φ’x = φx n’y = ny n’x = nx | φ’y = φy φ’x = φx n’y = ny n’x = nx | |||
Gil-Martín et al. [35] | MPFA | MPFA | MPFA | |
z(mm) | - | 269.9 | 250.4 | 280.3 |
θ(rad) | - | 0.8660 | 1.0035 | 1.1029 |
b(mm) | - | 495 | 460 | 465 |
h(mm) | - | 575 | 620 | 615 |
φ’y(mm) | - | 12 | 12 | - |
n’y | - | 8 | 2 | - |
φy(mm) | - | 12 | 12 | 10 |
ny | - | 8 | 2 | 10 |
φ’x(mm) | - | 12 | 32 | 10 |
n’x | - | 10 | 2 | 2 |
φx(mm) | - | 12 | 32 | 16 |
nx | - | 10 | 2 | 9 |
Ast(mm2) | - | 4070.2 | 3667.0 | 2752.0 |
Relative Ast (%) | - | 100.0 | 90.1 | 67.6 |
Cost (€/m) | - | 98.5 | 95.1 | 86.6 |
Relative cost (%) | - | 100.0 | 96.5 | 87.9 |
Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|
φ’y = φy = φ’x = φx n’y = ny n’x = nx | φ’y = φy φ’x = φx n’y = ny n’x = nx | |||
Gil-Martín et al. [35] | MPFA | MPFA | MPFA | |
z(mm) | - | 222.7 | 203.2 | 242.1 |
θ(rad) | - | 1.1585 | 1.2390 | 1.1597 |
b(mm) | - | 400 | 400 | 400 |
h(mm) | - | 700 | 700 | 700 |
φ’y(mm) | - | 16 | 12 | 10 |
n’y | - | 9 | 9 | 4 |
φy(mm) | - | 16 | 12 | 16 |
ny | - | 9 | 9 | 10 |
φ’x(mm) | - | 16 | 25 | 12 |
n’x | - | 4 | 3 | 3 |
φx(mm) | - | 16 | 25 | 16 |
nx | - | 4 | 3 | 5 |
Ast(mm2) | - | 5217.6 | 4978.7 | 3669.4 |
Relative Ast (%) | - | 100.0 | 95.4 | 70.3 |
Cost (€/m) | - | 109.6 | 107.4 | 95.2 |
Relative cost (%) | - | 100.0 | 98.0 | 86.9 |
Case 1 | Case 2 | Case 3 | ||
---|---|---|---|---|
φ’y = φy = φ’x = φx n’y = ny n’x = nx | φ’y = φy φ’x = φx n’y = ny n’x = nx | |||
Gil-Martín et al. [35] | MPFA | MPFA | MPFA | |
z(mm) | - | 251.8 | 243.7 | 264.6 |
θ(rad) | - | 0.8095 | 0.9426 | 0.8786 |
b(mm) | - | 500 | 485 | 485 |
h(mm) | - | 565 | 605 | 615 |
φ’y(mm) | - | 14 | 12 | 10 |
n’y | - | 7 | 6 | 4 |
φy(mm) | - | 14 | 12 | 14 |
ny | - | 7 | 6 | 9 |
φ’x(mm) | - | 14 | 25 | 10 |
n’x | - | 8 | 3 | 3 |
φx(mm) | - | 14 | 25 | 14 |
nx | - | 8 | 3 | 7 |
Ast(mm2) | - | 4618.1 | 4300.6 | 3012.8 |
Relative Ast (%) | - | 100.0 | 93.1 | 65.2 |
Cost (€/m) | - | 103.2 | 102.1 | 90.9 |
Relative cost (%) | - | 100.0 | 98.9 | 88.1 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 91.92 | 0.9889 | 0.71 |
2 | 92.02 | 0.9878 | 0.62 |
3 | 91.91 | 0.9890 | 0.58 |
4 | 91.75 | 0.9907 | 0.50 |
5 | 92.10 | 0.9869 | 0.91 |
6 | 92.24 | 0.9855 | 0.69 |
7 | 92.28 | 0.9850 | 0.77 |
8 | 92.39 | 0.9839 | 0.92 |
9 | 92.68 | 0.9808 | 1.06 |
10 | 92.64 | 0.9812 | 1.05 |
11 | 92.71 | 0.9805 | 1.29 |
12 | 92.69 | 0.9807 | 1.17 |
13 | 92.68 | 0.9808 | 0.99 |
14 | 92.92 | 0.9783 | 1.07 |
15 | 92.64 | 0.9812 | 0.93 |
16 | 93.05 | 0.9769 | 1.21 |
Averaged value | 92.41 | 0.9836 | 0.91 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 91.92 | 0.9889 | 0.71 |
2 | 91.68 | 0.9915 | 0.55 |
3 | 91.87 | 0.9894 | 0.69 |
4 | 91.87 | 0.9895 | 0.60 |
5 | 91.96 | 0.9885 | 0.64 |
6 | 91.97 | 0.9884 | 0.61 |
7 | 91.98 | 0.9882 | 0.85 |
8 | 92.26 | 0.9853 | 0.76 |
9 | 92.17 | 0.9862 | 0.74 |
10 | 92.39 | 0.9839 | 0.95 |
11 | 92.11 | 0.9869 | 0.73 |
12 | 92.45 | 0.9832 | 0.93 |
13 | 92.25 | 0.9854 | 0.88 |
14 | 92.51 | 0.9826 | 0.76 |
15 | 92.45 | 0.9832 | 0.81 |
16 | 92.59 | 0.9817 | 0.89 |
Averaged value | 92.15 | 0.9864 | 0.76 |
Subpopulations | Mean Cost | Accuracy | Robustness |
---|---|---|---|
1 | 91.92 | 0.9889 | 0.71 |
2 | 91.87 | 0.9895 | 0.60 |
3 | 91.87 | 0.9895 | 0.62 |
4 | 91.97 | 0.9884 | 0.71 |
5 | 92.09 | 0.9871 | 0.77 |
6 | 92.02 | 0.9878 | 0.77 |
7 | 92.20 | 0.9859 | 0.80 |
8 | 92.25 | 0.9854 | 0.82 |
9 | 92.17 | 0.9862 | 0.79 |
10 | 92.20 | 0.9859 | 0.83 |
11 | 92.27 | 0.9852 | 0.80 |
12 | 92.25 | 0.9853 | 0.79 |
13 | 92.19 | 0.9860 | 0.82 |
14 | 92.47 | 0.9831 | 0.79 |
15 | 92.28 | 0.9851 | 0.89 |
16 | 92.49 | 0.9828 | 0.86 |
Averaged value | 92.16 | 0.9864 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Olivares, G.; Tomás, A. Optimization of Reinforced Concrete Sections under Compression and Biaxial Bending by Using a Parallel Firefly Algorithm. Appl. Sci. 2021, 11, 2076. https://doi.org/10.3390/app11052076
Sánchez-Olivares G, Tomás A. Optimization of Reinforced Concrete Sections under Compression and Biaxial Bending by Using a Parallel Firefly Algorithm. Applied Sciences. 2021; 11(5):2076. https://doi.org/10.3390/app11052076
Chicago/Turabian StyleSánchez-Olivares, Gregorio, and Antonio Tomás. 2021. "Optimization of Reinforced Concrete Sections under Compression and Biaxial Bending by Using a Parallel Firefly Algorithm" Applied Sciences 11, no. 5: 2076. https://doi.org/10.3390/app11052076
APA StyleSánchez-Olivares, G., & Tomás, A. (2021). Optimization of Reinforced Concrete Sections under Compression and Biaxial Bending by Using a Parallel Firefly Algorithm. Applied Sciences, 11(5), 2076. https://doi.org/10.3390/app11052076