Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions
Abstract
:1. Introduction
2. Manufacturing Scheduling
3. Survey Approach
3.1. Research Questions
3.2. Search Sources and Process
3.3. Inclusion and Exclusion Criteria
4. Main Findings
4.1. Manufacturing Scheduling Requirements
4.1.1. Dynamic Environments
4.1.2. Flexibility
4.1.3. Processing Times Variation
4.1.4. Setup Times
4.1.5. Maintenance
4.1.6. Precedence Activities
4.1.7. Pre-Emption
4.1.8. Release and Due Dates
4.1.9. Transportation
4.1.10. Storage
4.1.11. Distributed Factories
4.1.12. Environmental Issues
4.2. Existing Approaches
ATCT—adjustment of total completion times; | MW—material wastage; |
CJ—completed jobs; | Obj—objective function; |
CW—cost of workers; | P—productivity; |
DD—due date; | Pd—precedence; |
DE—dynamic events; DF—distributed factories; | PDC—total production and distribution costs; |
E—earliness; | PM—parallel machine; |
EC—energy consumption; | Pr – pre-emption; |
F—flexible shopfloor; | PT—processing time; |
FS—flow shop; | RD—release date; |
I—industry-oriented; | RM—resources management; |
JS—job shop; | S—storage; |
LB—load balance; | Set—setup times; |
M—makespan; | SCT—sum of completion times; |
MAPE—mean absolute percentage error; | SM—single machine; |
MC—manufacturing cost; | ST—shop type; |
MDO—maximize delivery of orders; | Stab – stability; |
MeanET—Mean earliness and tardiness; | T—tardiness; |
MEP—maximize early production; | TDR—tardiness delivery rate; |
MET—sum of maximum earliness and tardiness; | TET—total earliness and tardiness; |
MFT—mean flow time; | TFT—total flow time; |
MOO—minimize overdue orders; | TT—transportation time; |
MSA—maximize system availability; | TV—processing times variation; |
Mt – maintenance; | TWM—total weighted makespan; |
MtC—maintenance cost; | TWT—total weight tardiness. |
Ref. | ST | I | DE | F | DF | TT | E | T | TV | Set | Mt | Pd | Pr | RD | DD | S | Obj |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[56] | PM | ✓ | TWM | ||||||||||||||
[57] | JS | ✓ | ✓ | M/EC | |||||||||||||
[40] | JS | ✓ | ✓ | ✓ | M | ||||||||||||
[58] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | M/TWT/E/T/S | ||||||||||
[59] | JS | ✓ | ✓ | M | |||||||||||||
[60] | JS | ✓ | ✓ | M | |||||||||||||
[49] | JS | ✓ | ✓ | ✓ | MET | ||||||||||||
[48] | FS | ✓ | ✓ | TWT | |||||||||||||
[51] | JS | ✓ | ✓ | ✓ | M | ||||||||||||
[44] | SM | ✓ | ✓ | ✓ | ✓ | ✓ | M | ||||||||||
[13] | FS | ✓ | ✓ | ✓ | ✓ | ✓ | MC/RM/ EC/TDR | ||||||||||
[45] | SM | ✓ | ✓ | ✓ | ✓ | MC/T | |||||||||||
[61] | FS/PM | ✓ | ✓ | ✓ | M/EC/MW | ||||||||||||
[62] | FS | ✓ | M/ATCT/PT | ||||||||||||||
[63] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | T/EC | ||||||||||
[64] | JS | ✓ | ✓ | M/Stab | |||||||||||||
[65] | JS | ✓ | ✓ | ✓ | ✓ | TWT | |||||||||||
[25] | PM | ✓ | ✓ | M/SCT/T | |||||||||||||
[66] | SM | ✓ | ✓ | MtC | |||||||||||||
[41] | PM | ✓ | ✓ | ✓ | ✓ | ✓ | E/T/MtC | ||||||||||
[67] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | M | |||||||||
[68] | JS | ✓ | ✓ | ✓ | MFT | ||||||||||||
[69] | FS | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | P/MDO/ MOO/CW | |||||||||
[70] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | E/T/PT | |||||||||
[9] | FS | ✓ | ✓ | ✓ | ✓ | T/CJ/LB | |||||||||||
[47] | JS | ✓ | ✓ | ✓ | ✓ | T | |||||||||||
[71] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | M/MFT/T | ||||||||||
[72] | JS | ✓ | ✓ | M/MSA/EC | |||||||||||||
[73] | PM | ✓ | ✓ | ✓ | ✓ | ✓ | T | ||||||||||
[74] | JS | ✓ | ✓ | ✓ | ✓ | M/TWT/MAPE | |||||||||||
[75] | PM | ✓ | M | ||||||||||||||
[76] | JS | M | |||||||||||||||
[77] | FS | ✓ | ✓ | ✓ | MET | ||||||||||||
[78] | JS | ✓ | ✓ | ✓ | M | ||||||||||||
[79] | FS | ✓ | ✓ | ✓ | EC/T | ||||||||||||
[80] | FS | ✓ | ✓ | ✓ | ✓ | MEP | |||||||||||
[81] | JS | ✓ | ✓ | ✓ | ✓ | M/MeanET | |||||||||||
[82] | JS | ✓ | M | ||||||||||||||
[83] | JS | ✓ | ✓ | M/Stab | |||||||||||||
[84] | JS | ✓ | ✓ | ✓ | Stab/M/TFT/LB | ||||||||||||
[85] | JS | ✓ | M | ||||||||||||||
[86] | SM | ✓ | ✓ | ✓ | TET | ||||||||||||
[87] | FS | ✓ | ✓ | M/EC | |||||||||||||
[88] | JS | ✓ | ✓ | M/LB | |||||||||||||
[89] | JS | ✓ | ✓ | ✓ | ✓ | M/TET | |||||||||||
[90] | PM | M | |||||||||||||||
[91] | JS | ✓ | ✓ | ✓ | M/LB/MFT | ||||||||||||
[26] | SM | ✓ | M | ||||||||||||||
[31] | JS | ✓ | ✓ | M | |||||||||||||
[92] | JS | ✓ | ✓ | M | |||||||||||||
[55] | JS | ✓ | M/EC | ||||||||||||||
[93] | FS | ✓ | ✓ | M | |||||||||||||
[94] | JS | ✓ | ✓ | ✓ | M/LB | ||||||||||||
[95] | JS | ✓ | M | ||||||||||||||
[96] | JS | ✓ | M | ||||||||||||||
[97] | FS | ✓ | ✓ | ✓ | ✓ | M | |||||||||||
[8] | FS | ✓ | ✓ | ✓ | M | ||||||||||||
[98] | JS | ✓ | ✓ | EC/MC | |||||||||||||
[99] | JS | ✓ | ✓ | ✓ | ✓ | M/MeanET | |||||||||||
[100] | JS | ✓ | ✓ | ✓ | ✓ | ✓ | MET/PDC | ||||||||||
[101] | FS | ✓ | ✓ | ✓ | ✓ | ✓ | T | ||||||||||
[37] | JS | ✓ | ✓ | ✓ | M/T | ||||||||||||
[102] | FS | ✓ | M | ||||||||||||||
[42] | PM | ✓ | ✓ | ✓ | ✓ | T | |||||||||||
[32] | PM | ✓ | LB |
5. Scheduling in the Context of Smart Manufacturing and Next Steps
5.1. Gaps and Challenges
5.2. Human Factor
5.3. Opportunities Future Work
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0—Securing the Future of German Manufacturing Industry. In Final Report of the Industrie 4.0 Working Group; Acatech—National Academy of Science and Engineering: Munich, Germany, 2013. [Google Scholar]
- Li, Q.; Tang, Q.; Chan, I.; Wei, H.; Pu, Y.; Jiang, H.; Li, J.; Zhou, J. Smart manufacturing standardization: Architectures, reference models and standards framework. Comput. Ind. 2018, 101, 91–106. [Google Scholar] [CrossRef]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Dionisio Rocha, A.; Peres, R.; Barata, J. An agent based monitoring architecture for plug and produce based manufacturing systems. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 1318–1323. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J. Intell. Manuf. 2019, 30, 1809–1830. [Google Scholar] [CrossRef]
- Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP 2016, 40, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Rossit, D.A.; Tohmé, F.; Frutos, M. Industry 4.0: Smart Scheduling. Int. J. Prod. Res. 2019, 57, 3802–3813. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, J.; Wang, H.; Wang, J. Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0-based manufacturing system. Appl. Soft Comput. 2018, 68, 847–855. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B.; Werner, F.; Ivanova, M. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. Int. J. Prod. Res. 2016, 54, 386–402. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Vlachou, E. A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance. J. Manuf. Syst. 2018, 47, 179–198. [Google Scholar] [CrossRef]
- Rossit, D.; Tohmé, F. Scheduling research contributions to Smart manufacturing. Manuf. Lett. 2018, 15, 111–114. [Google Scholar] [CrossRef]
- Shiue, Y.-R.; Lee, K.-C.; Su, C.-T. Real-time scheduling for a smart factory using a reinforcement learning approach. Comput. Ind. Eng. 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Liu, Y.; Yang, H.; Li, M.; Huisingh, D.; Wang, L. The ‘Internet of Things’ enabled real-time scheduling for remanufacturing of automobile engines. J. Clean. Prod. 2018, 185, 562–575. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Dai, Q.Y.; Qu, T.; Hu, G.J.; Huang, G.Q. RFID-enabled real-time manufacturing execution system for mass-customization production. Robot. Comput. Integr. Manuf. 2013, 29, 283–292. [Google Scholar] [CrossRef]
- Lu, C.; Gao, L.; Li, X.; Pan, Q.; Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J. Clean. Prod. 2017. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Xue, G.; Yang, D. Towards Energy-efficient Task Scheduling on Smartphones in Mobile Crowd Sensing Systems. Comput. Netw. 2016. [Google Scholar] [CrossRef]
- Carosi, S.; Frangioni, A.; Galli, L.; Girardi, L.; Vallese, G. A Tool for Practical Integrated Time-Table Design and Vehicle Scheduling in Public Transport Systems. In A View of Operations Research Applications in Italy; Springer: Cham, Switzerland, 2019; pp. 207–217. [Google Scholar]
- Ernst, A.T.; Jiang, H.; Krishnamoorthy, M.; Sier, D. Staff scheduling and rostering: A review of applications, methods and models. Eur. J. Oper. Res. 2004, 153, 3–27. [Google Scholar] [CrossRef]
- Balin, S. Non-identical parallel machine scheduling using genetic algorithm. Expert Syst. Appl. 2011, 38, 6814–6821. [Google Scholar] [CrossRef]
- Li, X.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 2016, 174, 93–110. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.V.; Xu, X.; Zhang, L. Scheduling in cloud manufacturing: State-of-the-art and research challenges. Int. J. Prod. Res. 2018, 7543, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.; Mei, Y.; Zhang, M. Genetic programming for production scheduling: A survey with a unified framework. Complex Intell. Syst. 2017, 3, 41–66. [Google Scholar] [CrossRef] [Green Version]
- Çaliş, B.; Bulkan, S. A research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 2015, 26, 961–973. [Google Scholar] [CrossRef]
- Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur. J. Oper. Res. 2016, 248, 744–757. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, I.S. Parallel machine scheduling with maintenance activities. Comput. Ind. Eng. 2016, 101, 361–371. [Google Scholar] [CrossRef]
- Chung, B.D.; Kim, B.S. A hybrid genetic algorithm with two-stage dispatching heuristic for a machine scheduling problem with step-deteriorating jobs and rate-modifying activities. Comput. Ind. Eng. 2016, 98, 113–124. [Google Scholar] [CrossRef]
- Framinan, J.M.; Leisten, R.; Ruiz García, R. Manufacturing Scheduling Systems; Springer: London, UK, 2014; ISBN 978-1-4471-6271-1. [Google Scholar]
- Pinedo, M.L. Scheduling Theory, Algorithms, and Systems; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-26578-0. [Google Scholar]
- Mattfeld, D.C. Evolutionary search and the job shop: Investigations on genetic algorithms for production scheduling. In Production and Logistic; Springer: Hedelberg/Berlin, Germany, 1996. [Google Scholar] [CrossRef]
- Werner, F. Genetic algorithms for shop scheduling problems: A survey. In Heuristics: Theory and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2011; Volume 11, pp. 1–66. Available online: http://www.math.uni-magdeburg.de/~werner/preprints/p11-31.pdf (accessed on 28 September 2020).
- Karimi, S.; Ardalan, Z.; Naderi, B.; Mohammadi, M. Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Appl. Math. Model. 2016, 41, 667–682. [Google Scholar] [CrossRef]
- Ouazene, Y.; Yalaoui, F.; Chehade, H.; Yalaoui, A. Workload balancing in identical parallel machine scheduling using a mathematical programming method. Int. J. Comput. Intell. Syst. 2014, 7, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Ouazene, Y.; Hnaien, F.; Yalaoui, F.; Amodeo, L. The Joint Load Balancing and Parallel Machine Scheduling Problem. In Operations Research Proceedings; Springer: Berlin/Heidelberg, Germany, 2011; pp. 497–502. [Google Scholar]
- Lin, L.; Hao, X.C.; Gen, M.; Jo, J.B. Network modeling and evolutionary optimization for scheduling in manufacturing. J. Intell. Manuf. 2012, 23, 2237–2253. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Iwamura, K.; Sugimura, N. A study on real-time scheduling for autonomous distributed manufacturing systems. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1352–1357. [Google Scholar] [CrossRef]
- Tran, L.V.; Huynh, B.H.; Akhtar, H. Ant Colony Optimization Algorithm for Maintenance, Repair and Overhaul Scheduling Optimization in the Context of Industrie 4.0. Appl. Sci. 2019, 9, 4815. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Branke, J. Evolutionary Optimization in Uncertain Environments—A Survey. IEEE Trans. Evol. Comput. 2005, 9, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Xing, K.; Han, L.; Gao, Z. Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl. Soft Comput. 2017, 18, 240–245. [Google Scholar] [CrossRef]
- Lu, P.-H.; Wu, M.-C.; Tan, H.; Peng, Y.-H.; Chen, C.-F. A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems. J. Intell. Manuf. 2018, 29, 19–34. [Google Scholar] [CrossRef]
- Zarook, Y.; Abedi, M. JIT-scheduling in unrelated parallel-machine environment with aging effect and multi-maintenance activities. Int. J. Serv. Oper. Manag. 2014, 18, 99. [Google Scholar] [CrossRef]
- Klement, N.; Abdeljaouad, M.A.; Porto, L.; Silva, C. Lot-Sizing and Scheduling for the Plastic Injection Molding Industry—A Hybrid Optimization Approach. Appl. Sci. 2021, 11, 1202. [Google Scholar] [CrossRef]
- Rivera-Gómez, H.; Montaño-Arango, O.; Corona-Armenta, J.; Garnica-González, J.; Ortega-Reyes, A.; Anaya-Fuentes, G. JIT Production Strategy and Maintenance for Quality Deteriorating Systems. Appl. Sci. 2019, 9, 1180. [Google Scholar] [CrossRef] [Green Version]
- Kaplanoǧlu, V. Multi-agent based approach for single machine scheduling with sequence-dependent setup times and machine maintenance. Appl. Soft Comput. J. 2014, 23, 165–179. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, M.; Chen, F.F. Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robot. Comput. Integr. Manuf. 2018, 51, 238–247. [Google Scholar] [CrossRef]
- Holgado, M.; Macchi, M.; Evans, S. Exploring the impacts and contributions of maintenance function for sustainable manufacturing. Int. J. Prod. Res. 2020, 58, 7292–7310. [Google Scholar] [CrossRef]
- Xiong, H.; Fan, H.; Jiang, G.; Li, G. A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints. Eur. J. Oper. Res. 2017, 257, 13–24. [Google Scholar] [CrossRef]
- Kuhpfahl, J.; Bierwirth, C. A study on local search neighborhoods for the job shop scheduling problem with total weighted tardiness objective. Comput. Oper. Res. 2016, 66, 44–57. [Google Scholar] [CrossRef]
- Yazdani, M.; Aleti, A.; Khalili, S.M.; Jolai, F. Optimizing the sum of maximum earliness and tardiness of the job shop scheduling problem. Comput. Ind. Eng. 2017, 107, 12–24. [Google Scholar] [CrossRef]
- Homayouni, S.M.; Fontes, D.B.M.M. Production and transport scheduling in flexible job shop manufacturing systems. J. Glob. Optim. 2021. [Google Scholar] [CrossRef]
- Chang, H.-C.; Liu, T.-K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms. J. Intell. Manuf. 2017, 28, 1973–1986. [Google Scholar] [CrossRef]
- Alaouchiche, Y.; Ouazene, Y.; Yalaoui, F. Economic and Energetic Performance Evaluation of Unreliable Production Lines: An Integrated Analytical Approach. IEEE Access 2020, 8, 185330–185345. [Google Scholar] [CrossRef]
- Tuo, J.; Liu, F.; Liu, P. Key performance indicators for assessing inherent energy performance of machine tools in industries. Int. J. Prod. Res. 2019, 57, 1811–1824. [Google Scholar] [CrossRef]
- Helu, M.; Libes, D.; Lubell, J.; Lyons, K.; Morris, K.C. Enabling Smart Manufacturing Technologies for Decision-Making Support. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016; p. V01BT02A035. [Google Scholar] [CrossRef] [Green Version]
- Salido, M.A.; Escamilla, J.; Barber, F.; Giret, A. Rescheduling in job-shop problems for sustainable manufacturing systems. J. Clean. Prod. 2017, 162, S121–S132. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.C.; Wang, J.Y.; Lin, M.C. A branch-and-bound algorithm for minimizing the total weighted completion time on parallel identical machines with two competing agents. Knowl. Based Syst. 2016, 105, 68–82. [Google Scholar] [CrossRef]
- Chou, Y.C.; Cao, H.; Cheng, H.H. A bio-inspired mobile agent-based integrated system for flexible autonomic job shop scheduling. J. Manuf. Syst. 2013, 32, 752–763. [Google Scholar] [CrossRef]
- Bürgy, R.; Bülbül, K. The job shop scheduling problem with convex costs. Eur. J. Oper. Res. 2018, 268, 82–100. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Dauzère-Pérès, S.; Neufeld, J.S. Solving the flexible job shop scheduling problem with sequence-dependent setup times. Eur. J. Oper. Res. 2018, 265, 503–516. [Google Scholar] [CrossRef]
- Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [Google Scholar] [CrossRef]
- Zeng, Z.; Hong, M.; Man, Y.; Li, J.; Zhang, Y.; Liu, H. Multi-object optimization of flexible flow shop scheduling with batch process—Consideration total electricity consumption and material wastage. J. Clean. Prod. 2018, 183, 925–939. [Google Scholar] [CrossRef]
- Mou, J.; Li, X.; Gao, L.; Yi, W. An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems. J. Intell. Manuf. 2018, 29, 789–807. [Google Scholar] [CrossRef]
- Alotaibi, A.; Lohse, N.; Vu, T.M. Dynamic Agent-based Bi-objective Robustness for Tardiness and Energy in a Dynamic Flexible Job Shop. Procedia CIRP 2016, 57, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gao, L.; Li, X. A hybrid genetic algorithm and tabu search for a multi-objective dynamic job shop scheduling problem. Int. J. Prod. Res. 2013, 51, 3516–3531. [Google Scholar] [CrossRef]
- Sobeyko, O.; Mönch, L. Heuristic approaches for scheduling jobs in large-scale flexible job shops. Comput. Oper. Res. 2016, 68, 97–109. [Google Scholar] [CrossRef]
- Ladj, A.; Varnier, C.; Tayeb, F.B.S. IPro-GA: An integrated prognostic based GA for scheduling jobs and predictive maintenance in a single multifunctional machine. IFAC-PapersOnLine 2016, 49, 1821–1826. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, Y.; Wang, X.V.; Zhang, L. Multi-agent-based scheduling in cloud manufacturing with dynamic task arrivals. Procedia CIRP 2018, 72, 953–960. [Google Scholar] [CrossRef]
- Nikolakis, N.; Kousi, N.; Michalos, G.; Makris, S. Dynamic scheduling of shared human-robot manufacturing operations. Procedia CIRP 2018, 72, 9–14. [Google Scholar] [CrossRef]
- Qu, S.; Wang, J.; Govil, S.; Leckie, J.O. Optimized Adaptive Scheduling of a Manufacturing Process System with Multi-skill Workforce and Multiple Machine Types: An Ontology-based, Multi-agent Reinforcement Learning Approach. Procedia CIRP 2016, 57, 55–60. [Google Scholar] [CrossRef]
- Freitag, M.; Hildebrandt, T. Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. CIRP Ann. Manuf. Technol. 2016, 65, 433–436. [Google Scholar] [CrossRef]
- Nie, L.; Gao, L.; Li, P.; Li, X. A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates. J. Intell. Manuf. 2013, 24, 763–774. [Google Scholar] [CrossRef]
- Mokhtari, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 2017, 104, 339–352. [Google Scholar] [CrossRef]
- Silva, C.; Klement, N.; Gibaru, O. A Generic Decision Support Tool for Lot-Sizing and Scheduling Problems with Setup and Due Dates. In Closing the Gap Between Practice and Research in Industrial Engineering; Springer: Cham, Switzerland, 2018; pp. 131–138. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.; Zhang, M.; Johnston, M.; Tan, K.C. Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evol. Comput. 2014, 18, 193–208. [Google Scholar] [CrossRef]
- Afzalirad, M.; Shafipour, M. Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. J. Intell. Manuf. 2015, 29, 423–437. [Google Scholar] [CrossRef]
- Asadzadeh, L. A local search genetic algorithm for the job shop scheduling problem with intelligent agents. Comput. Ind. Eng. 2015, 85, 376–383. [Google Scholar] [CrossRef]
- Mokhtari, H.; Noroozi, A. An efficient chaotic based PSO for earliness/tardiness optimization in a batch processing flow shop scheduling problem. J. Intell. Manuf. 2018, 29, 1063–1081. [Google Scholar] [CrossRef]
- Han, L.; Xing, K.; Chen, X.; Xiong, F. A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. J. Intell. Manuf. 2015, 29, 1083–1096. [Google Scholar] [CrossRef]
- Lei, D.; Gao, L.; Zheng, Y. A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop. IEEE Trans. Eng. Manag. 2018, 65, 330–340. [Google Scholar] [CrossRef]
- Azami, A.; Demirli, K.; Bhuiyan, N. Scheduling in aerospace composite manufacturing systems: A two-stage hybrid flow shop problem. Int. J. Adv. Manuf. Technol. 2018, 95, 3259–3274. [Google Scholar] [CrossRef]
- Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 2016, 27, 363–374. [Google Scholar] [CrossRef]
- Jamili, A. Robust job shop scheduling problem: Mathematical models, exact and heuristic algorithms. Expert Syst. Appl. 2016, 55, 341–350. [Google Scholar] [CrossRef]
- Ahmadi, E.; Zandieh, M.; Farrokh, M.; Emami, S.M. A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 2016, 73, 56–66. [Google Scholar] [CrossRef]
- Gao, K.; Yang, F.; Zhou, M.; Pan, Q.; Suganthan, P.N. Flexible Job-Shop Rescheduling for New Job Insertion by Using Discrete Jaya Algorithm. IEEE Trans. Cybern. 2019, 49, 1944–1955. [Google Scholar] [CrossRef]
- Marzouki, B.; Belkahla Driss, O.; Ghédira, K. Multi Agent model based on Chemical Reaction Optimization with Greedy algorithm for Flexible Job shop Scheduling Problem. Procedia Comput. Sci. 2017, 112, 81–90. [Google Scholar] [CrossRef]
- Parsa, N.R.; Karimi, B.; Husseini, S.M.M. Exact and heuristic algorithms for the just-in-time scheduling problem in a batch processing system. Comput. Oper. Res. 2017, 80, 173–183. [Google Scholar] [CrossRef]
- Tang, D.; Dai, M.; Salido, M.A.; Giret, A. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput. Ind. 2016, 81, 82–95. [Google Scholar] [CrossRef]
- Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F.; Sadollah, A. Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowl. Based Syst. 2016, 109, 1–16. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, J.; Wang, J.; Jonrinaldi. An improved particle swarm optimization with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem. Comput. Oper. Res. 2014, 45, 38–50. [Google Scholar] [CrossRef]
- Costa, A.; Cappadonna, F.A.; Fichera, S. Minimizing the total completion time on a parallel machine system with tool changes. Comput. Ind. Eng. 2016, 91, 290–301. [Google Scholar] [CrossRef]
- Petrović, M.; Vuković, N.; Mitić, M.; Miljković, Z. Integration of process planning and scheduling using chaotic particle swarm optimization algorithm. Expert Syst. Appl. 2016, 64, 569–588. [Google Scholar] [CrossRef]
- Kundakcı, N.; Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput. Ind. Eng. 2016, 96, 31–51. [Google Scholar] [CrossRef]
- Jung, S.; Woo, Y.B.; Kim, B.S. Two-stage assembly scheduling problem for processing products with dynamic component-sizes and a setup time. Comput. Ind. Eng. 2017, 104, 98–113. [Google Scholar] [CrossRef]
- Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Chong, C.S.; Cai, T.X. An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Syst. Appl. 2016, 65, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cai, J.; Li, M.; Liu, Z. Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization. Sci. Program. 2017, 2017. [Google Scholar] [CrossRef]
- Xiong, W.; Fu, D. A new immune multi-agent system for the flexible job shop scheduling problem. J. Intell. Manuf. 2015, 29, 857–873. [Google Scholar] [CrossRef]
- Helo, P.; Phuong, D.; Hao, Y. Cloud manufacturing—Scheduling as a service for sheet metal manufacturing. Comput. Oper. Res. 2018, 110, 1–12. [Google Scholar] [CrossRef]
- Barak, S.; Moghdani, R.; Maghsoudlou, H. Energy-efficient multi-objective flexible manufacturing scheduling. J. Clean. Prod. 2020, 283, 124610. [Google Scholar] [CrossRef]
- Zan, X.; Wu, Z.; Guo, C.; Yu, Z. A Pareto-based genetic algorithm for multi-objective scheduling of automated manufacturing systems. Adv. Mech. Eng. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Mohammadi, S.; Al-e-Hashem, S.M.J.M.; Rekik, Y. An integrated production scheduling and delivery route planning with multi-purpose machines: A case study from a furniture manufacturing company. Int. J. Prod. Econ. 2020, 219, 347–359. [Google Scholar] [CrossRef]
- Baxendale, M.; McGree, J.M.; Bellette, A.; Corry, P. Machine-based production scheduling for rotomoulded plastics manufacturing. Int. J. Prod. Res. 2020, 1–18. [Google Scholar] [CrossRef]
- Guo, J.; Shi, Y.; Chen, Z.; Yu, T.; Shirinzadeh, B.; Zhao, P. Improved SP-MCTS-Based Scheduling for Multi-Constraint Hybrid Flow Shop. Appl. Sci. 2020, 10, 6220. [Google Scholar] [CrossRef]
- Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016, 23, 551–591. [Google Scholar] [CrossRef]
- Ribeiro, L.; Member, S.; Bj, M. Transitioning From Standard Automation Solutions to Cyber-Physical Production Systems: An Assessment of Critical Conceptual and Technical Challenges. IEEE Syst. J. 2017, 12, 3816–3827. [Google Scholar] [CrossRef] [Green Version]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- International Society of Automation ISA 95. Available online: https://isa-95.com/ (accessed on 15 June 2020).
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- CEN, CENELEC, and ETSI. “Smart Grid Reference Architecture”. 2012. Available online: ftp://ftp.cen.eu/EN/EuropeanStandardization/HotTopics/SmartGrids/Security.pdf (accessed on 18 June 2020).
- Shi-Wan, L.; Bradford, M.; Jacques, D.; Graham, B.; Chigani, A.; Martin, R.; Murphy, B.; Crawford, M. The Industrial Internet of Things Volume G1: Reference Architecture; Industrial Internet Consortium White Paper; Version 1; Industrial Internet Consortium: Milford, MA, USA, 2017; p. 58. [Google Scholar]
- ZVEI. “Communication in the Context of Industrie 4.0”. 2019. Available online: https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2019/Maerz/Communication_in_the_Context_of_Industrie_4.0/ZVEI_WP_Kommunikation_Industrie-4.0-Umfeld_ENGLISCH.pdf (accessed on 12 May 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemão, D.; Rocha, A.D.; Barata, J. Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions. Appl. Sci. 2021, 11, 2186. https://doi.org/10.3390/app11052186
Alemão D, Rocha AD, Barata J. Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions. Applied Sciences. 2021; 11(5):2186. https://doi.org/10.3390/app11052186
Chicago/Turabian StyleAlemão, Duarte, André Dionisio Rocha, and José Barata. 2021. "Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions" Applied Sciences 11, no. 5: 2186. https://doi.org/10.3390/app11052186
APA StyleAlemão, D., Rocha, A. D., & Barata, J. (2021). Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions. Applied Sciences, 11(5), 2186. https://doi.org/10.3390/app11052186