Similar Outcomes and Satisfaction of the Proprioceptive versus Standard Training on the Knee Function and Proprioception, Following the Anterior Cruciate Ligament Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Protocol and Postoperative Management
2.3. Rehabilitation Program
2.4. Evaluations
2.5. Statistical Analysis
3. Results
3.1. Demographics
3.2. Subjective Knee Evaluation
3.3. Objective Knee Evaluation
3.4. Correlations between Subjective and Objective Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrett, D.S. Proprioception and function after anterior cruciate reconstruction. J. Bone Jt. Surg. 1991, 73, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Relph, N.; Herrington, L.; Tyson, S. The effects of ACL injury on knee proprioception: A meta-analysis. Physiotherapy 2014, 100, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arockiaraj, J.; Korula, R.J.; Oommen, A.T.; Devasahayam, S.; Wankhar, S.; Velkumar, S.; Poonnoose, P.M. Proprioceptive changes in the contralateral knee joint following anterior cruciate injury. Bone Jt. J. 2013, 95, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Beynnon, B.D.; Johnson, R.J.; Fleming, B.C. The Science of Anterior Cruciate Ligament Rehabilitation. Clin. Orthop. Relat. Res. 2002, 402, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Cascio, B.M.; Culp, L.; Cosgarea, A.J. Return to play after anterior cruciate ligament reconstruction. Clin. Sports Med. 2004, 23, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Tandogan, R.N.; Taşer, Ö.; Kayaalp, A.; Taşkıran, E.; Pınar, H.; Alparslan, B.; Alturfan, A. Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: Relationship with age, time from injury, and level of sport. Knee. Surg. Sports Traumatol. Arthrosc. 2004, 12, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Van Grinsven, S.; Van Cingel, R.E.H.; Holla, C.J.M.; Van Loon, C.J.M. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee. Surg. Sports Traumatol. Arthrosc. 2010, 18, 1128–1144. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.; Prabhakar, S.; Dhillon, M.S. Proprioception in anterior cruciate ligament deficient knees and its relevance in anterior cruciate ligament reconstruction. Indian J. Orthop. 2011, 45, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Kruse, L.M.; Gray, B.; Wright, R.W. Rehabilitation after anterior cruciate ligament reconstruction: A systematic review. J. Bone Jt. Surg. 2012, 94, 1737–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Zhang, D.; Zhao, T.; Liu, X.; Wang, J.; Zheng, H.; Jin, S. The effects of proprioceptive training on anterior cruciate ligament reconstruction rehabilitation: A systematic review and meta-analysis. Clin. Rehabil. 2020, 23, 506–521. [Google Scholar] [CrossRef]
- Piontek, T.; Ciemniewska-Gorzela, K.; Szulc, A. Knee dislocation: Concurrent arthroscopic ACL and PCL reconstruction-op-erating technique. Chir. Narzadow. Ruchu. Ortop. Pol. 2008, 73, 289–296. [Google Scholar] [PubMed]
- Piontek, T.; Ciemniewska-Gorzela, K.; Szulc, A.; Naczk, J.; Wardak, M.; Trzaska, T.; Dudzinski, W.; Grygorowicz, M. Arthroscopically Assisted Combined Anterior and Posterior Cruciate Ligament Reconstruction with Autologous Hamstring Grafts–Isokinetic Assessment with Control Group. PLoS ONE 2013, 8, e82462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu-Ambrose, T.; Taunton, J.E.; MacIntyre, D.; McConkey, P.; Khan, K.M. The effects of proprioceptive or strength training on the neuromuscular function of the ACL reconstructed knee: A randomized clinical trial. Scand. J. Med. Sci. Sports 2003, 13, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.L.; Taylor, N.F.; Feller, J.A. A Randomised Controlled Trial of Proprioceptive and Balance Training after Surgical Reconstruction of the Anterior Cruciate Ligament. Res. Sports Med. 2005, 13, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Guney-Deniz, H.; Sayaca, C.; Calik, M.; Doral, M.N. Effects on Lower Extremity Neuromuscular Control Exercises on Knee Proprioception, Muscle Strength, and Functional Level in Patients with ACL Reconstruction. BioMed Res. Int. 2019, 2019, 1694695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risberg, M.A.; Holm, I.; Myklebust, G.; Engebretsen, L. Neuromuscular Training Versus Strength Training During First 6 Months After Anterior Cruciate Ligament Reconstruction: A Randomized Clinical Trial. Phys. Ther. 2007, 87, 737–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellino, F.; Paolucci, T.; Zangrando, F.; Iosa, M.; Adriani, E.; Mancini, P.; Bellelli, A.; Saraceni, V.M. Neurocognitive reha-bilitative approach effectiveness after anterior cruciate ligament reconstruction with patellar tendon. A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2012, 48, 17–30. [Google Scholar]
- Eastlack, M.E.; Axe, M.J.; Snyder-Mackler, L. Laxity, instability, and functional outcome after ACL injury: Copers versus noncopers. Med. Sci. Sports Exerc. 1999, 13, 210–215. [Google Scholar] [CrossRef] [PubMed]
- De Jong, S.N.; van Caspel, D.R.; van Haeff, M.J.; Saris, D.B. Functional assessment and muscle strength before and after recon-struction of chronic anterior cruciate ligament lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 21.e1–21.e11. [Google Scholar] [CrossRef] [PubMed]
- Lephart, S.M.; Fu, F.H. Proprioception and Neuromuscular Control in Joint Stability; Human Kinetics: Champaign, IL, USA, 2000; pp. 1–439. [Google Scholar]
- Gribble, P.A.; Hertel, J. Effect of Lower-Extremity Muscle Fatigue on Postural Control. Arch. Phys. Med. Rehabil. 2004, 85, 589–592. [Google Scholar] [CrossRef] [PubMed]
Stage (Duration) | Group A—Proprioceptive Exercises | Group B—Standard Protocol |
---|---|---|
I (0–2 weeks) | i. isometric exercises of the quadriceps, hamstrings, adductors and abductors ii. exercises increasing the range of motion | i. isometric exercises of the quadriceps, hamstrings, adductors and abductors ii. exercises increasing the range of motion |
II (3–8 weeks) | i. active exercises in the lying position ii. hip exercises in the one-leg standing positioncore stability exercises, e.g., plank and side plank iii. forcing the ball into the wall of the operated limb while lying on the back iv. extending the knee joint with an external load | i. active exercises in the lying position ii. hip exercises in the one-leg standing positioncore stability exercises, e.g., plank and side plank |
III (9–12 weeks) | i. standing exercises ii. dynamometric platforms iii. standing on unstable ground iv. squats up to 90 degrees on unstable ground | i. standing exercises |
IV (13–24 weeks) | i. external load ii. warm-up on a stationary bike with an increasing load iii. exercises in closed chains iv. exercises on stable and unstable ground (e.g., one-leg squat, lunges, reverse lunges and one-leg deadlifts) v. both-leg and one-leg jumping on a trampoline with stops | i. external load ii. warm-up on a stationary bike with an increasing load iii. exercises in closed chains |
V (from the 24th week) | i. double-leg jumps, single-leg jumps and plyometric exercises (jumping exercises aimed at increasing dynamics and power) | i. double-leg jumps, single-leg jumps and plyometric exercises (jumping exercises aimed at increasing dynamics and power) |
Test | Group A | Group B | p |
---|---|---|---|
IKDC | 76.2 ± 10.2 (54.0–87.0) | 75.1 ± 7.8 (59.0–86.0) | 0.398 |
Lysholm | 93.5 ± 10.2 (66.0–100.0) | 90.3 ± 9.7 (65.0–100.0) | 0.091 |
Test | Limb | Group A | Group B | p |
---|---|---|---|---|
60-PkTrq Ext | Operated | 171 ± 52 (70–249) | 162 ± 50 (86–256) | 0.512 |
Intact | 209 ± 54 (113–300) | 188 ± 43 (110–247) | 0.296 | |
60-PkTrq Flx | Operated | 100 ± 31 (47–153) | 99 ± 31 (41–153) | 0.678 |
Intact | 114 ± 25 (62 –153) | 104 ± 28 (68–151) | 0.175 | |
PkTrq/weight Ext | Operated | 230 ± 66 (121–357) | 202 ± 74 (69–330) | 0.277 |
Intact | 280 ± 62 (199–411) | 228 ± 57 (75–309) | 0.044 | |
PkTrq/weight Flx | Operated | 134 ± 38 (59–219) | 122 ± 40 (39–192) | 0.445 |
Intact | 154 ± 31 (101–218) | 126 ± 37 (40–189) | 0.024 | |
Mean Pw Ext | Operated | 117 ± 34 (49–182) | 108 ± 31 (52–162) | 0.414 |
Intact | 137 ± 36 (74–197) | 127 ± 30 (76–174) | 0.550 | |
Mean Pw Flx | Operated | 68 ± 22 (27–108) | 68 ± 24 (28–112) | 0.904 |
Intact | 78 ± 19 (45–114) | 78 ± 19 (45–104) | 0.194 | |
Flx/Ext Ratio [%] | Operated | 59 ± 11 (46–80) | 63 ± 18 (40–121) | 0.602 |
Intact | 56 ± 8 (44–76) | 55 ± 10 (41–78) | 0.989 |
Test | Limb | Group A | Group B | p |
---|---|---|---|---|
Lachmann | Operated | 7.4 ± 1.8 (4.0–10.0) | 7.0 ± 1.7 (4.0–11.0) | 0.445 |
Intact | 6.5 ± 2.3 (4.0–12.0) | 6.2 ± 1.4 (4.0–10.0) | 0.947 | |
Drawer test | Operated | 7.0 ± 1.5 (4.0–10.0) | 6.8 ± 1.7 (3.0–11.0) | 0.678 |
Intact | 6.1 ± 1.5 (4.0–8.0) | 6.3 ± 1.7 (3.0–10.0) | 0.758 |
Test | Limb | Group A | Group B | p |
---|---|---|---|---|
STRD_EO | Operated | 5.5 ± 0.6 (4.0–6.0) | 5.0 ± 1.7 (4.0–6.0) | 0.478 |
Intact | 5.7 ± 0.5 (4.0–6.0) | 5.5 ± 1.2 (1.0–6.0) | 0.728 | |
STRD_EC | Operated | 4.3 ± 1.2 (1.0–6.0) | 3.9 ± 1.6 (1.0–5.5) | 0.698 |
Intact | 4.0 ± 1.5 (1.0–6.0) | 4.1 ± 1.8 (1.0–6.0) | 0.647 | |
DTRD | Operated | 4.5 ± 0.5 (3.5–5.5) | 4.4 ± 0.7 (3.0–6.0) | 0.779 |
Intact | 4.5 ± 0.4 (4.0–5.0) | 4.4 ± 0.7 (3.0–5.5) | 0.607 | |
RF | Operated | 1.6 ± 0.8 (0.0–2.0) | 1.5 ± 0.8 (0.0–2.0) | 0.495 |
Intact | 1.5 ± 0.8 (0.0–2.0) | 1.4 ± 0.8 (0.0–2.0) | 0.380 | |
IS | Operated | 4.4 ± 1.8 (1.5–9.4) | 5.3 ± 2.2 (1.4–11.3) | 0.134 |
Intact | 4.6 ± 1.9 (2.2–9.2) | 5.2 ± 2.7 (2.0–10.2) | 0.627 | |
VPC | Operated | 54.4 ± 12.9 (32.3–73.8) | 51.6 ± 12.5 (31.7–76.9) | 0.529 |
Intact | 53.9 ± 14.2 (18.0–73.4) | 53.8 ± 14.5 (27.4 –74.3) | 0.945 |
Subjective Test | Objective Test | r | p |
---|---|---|---|
IKDC | Pk Trq/weight Ext | 0.615 | 0.004 |
IKDC | Pk Trq—weight Ext | −0.614 | 0.004 |
IKDC | VPC | −0.667 | 0.001 |
Lachman | STRD_EC | −0.645 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąkowski, P.; Ciemniewska-Gorzela, K.; Bąkowska-Żywicka, K.; Stołowski, Ł.; Piontek, T. Similar Outcomes and Satisfaction of the Proprioceptive versus Standard Training on the Knee Function and Proprioception, Following the Anterior Cruciate Ligament Reconstruction. Appl. Sci. 2021, 11, 3494. https://doi.org/10.3390/app11083494
Bąkowski P, Ciemniewska-Gorzela K, Bąkowska-Żywicka K, Stołowski Ł, Piontek T. Similar Outcomes and Satisfaction of the Proprioceptive versus Standard Training on the Knee Function and Proprioception, Following the Anterior Cruciate Ligament Reconstruction. Applied Sciences. 2021; 11(8):3494. https://doi.org/10.3390/app11083494
Chicago/Turabian StyleBąkowski, Paweł, Kinga Ciemniewska-Gorzela, Kamilla Bąkowska-Żywicka, Łukasz Stołowski, and Tomasz Piontek. 2021. "Similar Outcomes and Satisfaction of the Proprioceptive versus Standard Training on the Knee Function and Proprioception, Following the Anterior Cruciate Ligament Reconstruction" Applied Sciences 11, no. 8: 3494. https://doi.org/10.3390/app11083494
APA StyleBąkowski, P., Ciemniewska-Gorzela, K., Bąkowska-Żywicka, K., Stołowski, Ł., & Piontek, T. (2021). Similar Outcomes and Satisfaction of the Proprioceptive versus Standard Training on the Knee Function and Proprioception, Following the Anterior Cruciate Ligament Reconstruction. Applied Sciences, 11(8), 3494. https://doi.org/10.3390/app11083494