Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling Swabs
2.3. Immunoassay Drug Test
2.4. Ion Mobility Spectrometry
2.5. Ambient Pressure Laser Desorption—Mass Spectrometry
2.6. Determination of Limits of Detection + Sampling of Real Case Samples
3. Results and Discussion
3.1. Method Comparison
3.1.1. Limits of Detection
IDT
IMS
APLD-MS
3.2. Analysis of Real Samples
3.2.1. Samples from a Former MDMA Lab
3.2.2. Amphetamine Samples from Contaminated Glassware
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. World Drug Report 2020; United Nations: Vienna, Austria, 2020. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addiction and Europol. European Drug Report 2020; Trends and Developments, Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- United Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and Their Ring-Substituted Analogues in Seized Materials; United Nations: Vienna, Austria, 2006. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addiction and Europol. EU Drug Markets Report: In-depth Analysis; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- De Giovanni, N.; Fucci, N. The Current Status of Sweat Testing For Drugs of Abuse: A Review. Curr. Med. Chem. 2013, 20, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Huang, K.; Luo, Q.; Yao, S.; Liu, X.; Yang, N.; Lin, C.; Luo, X. The Application of a Desktop NMR Spectrometer in Drug Analysis. Int. J. Anal. Chem. 2018, 2018, 3104569. [Google Scholar] [CrossRef]
- Gerace, E.; Seganti, F.; Luciano, C.; Lombardo, T.; di Corcia, D.; Teifel, H.; Vincenti, M.; Salomone, A. On-site identification of psychoactive drugs by portable Raman spectroscopy during drug-checking service in electronic music events. Drug Alcohol Rev. 2019, 38, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, K.; Yamamuro, T.; Kuwayama, K.; Kanamori, T.; Iwata, Y.T.; Miyamoto, K.; Kasuya, F.; Inoue, H. Development of a Library Search-Based Screening System for 3,4-Methylenedioxymethamphetamine in Ecstasy Tablets Using a Portable Near-Infrared Spectrometer. J. Forensic Sci. 2016, 61, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Sisco, E.; Verkouteren, J.; Staymates, J.; Lawrence, J. Rapid detection of fentanyl, fentanyl analogues, and opioids for on-site or laboratory based drug seizure screening using thermal desorption DART-MS and ion mobility spectrometry. Forensic Chem. 2017, 4, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Forbes, T.P.; Staymates, M.; Sisco, E. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection. Analyst 2017, 142, 3002–3010. [Google Scholar] [CrossRef] [PubMed]
- Seto, Y.; Kanamori-Kataoka, M.; Tsuge, K.; Ohsawa, I.; Matsushita, K.; Sekiguchi, H.; Itoi, T.; Iura, K.; Sano, Y.; Yamashiro, S. Sensing technology for chemical-warfare agents and its evaluation using authentic agents. Sens. Actuators B Chem. 2005, 108, 193–197. [Google Scholar] [CrossRef]
- Reiss, R.; Ehlert, S.; Heide, J.; Pütz, M.; Forster, T.; Zimmermann, R. Ambient Pressure Laser Desorption—Chemical Ionization Mass Spectrometry for Fast and Reliable Detection of Explosives, Drugs, and Their Precursors. Appl. Sci. 2018, 8, 933. [Google Scholar] [CrossRef]
- Ehlert, S.; Hölzer, J.; Rittgen, J.; Pütz, M.; Schulte-Ladbeck, R.; Zimmermann, R. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 6979–6993. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, S.; Walte, A.; Zimmermann, R. Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives. Anal. Chem. 2013, 85, 11047–11053. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Barry, M.G.; Scott, K.R.; Kavanagh, P.V. An unusual presentation of a customs importation seizure containing amphetamine, possibly synthesized by the APAAN-P2P-Leuckart route. Forensic Sci. Int. 2014, 234, e10–e13. [Google Scholar] [CrossRef] [PubMed]
- Crossley, F.S.; Moore, M.L. Studies on the leuckart reaction. J. Org. Chem. 1944, 9, 529–536. [Google Scholar] [CrossRef]
- Hauser, F.M.; Rößler, T.; Hulshof, J.W.; Weigel, D.; Zimmermann, R.; Pütz, M. Identification of specific markers for amphetamine synthesised from the pre-precursor APAAN following the Leuckart route and retrospective search for APAAN markers in profiling databases from Germany and the Netherlands. Drug Test. Anal. 2018, 10, 671–680. [Google Scholar] [CrossRef] [PubMed]
Substance Name | LOD IDT/ng | LOD IMS/ng | LOD APLD-MS/ng |
---|---|---|---|
Amphetamine base | 2 | 2 | 20 |
Amphetamine sulphate | 2 | 2 | 10 |
MDMA HCl | 2 | 5 | 21 |
Methamphetamine | 2 | 1 | 11 |
APAAN | -- | 5 | 10 |
Ephedrine HCl | -- | 1 | 6 |
NFA | -- | 9 | 9 |
BMK | -- | -- | 11 |
PMK | -- | -- | 6 |
Sample | IDT | IMS | APLD-MS |
---|---|---|---|
Drying cabinet | + | + | + |
Büchner funnel | + | + | + |
Wall | + | + | + |
Sample | IDT | IMS | APLD−MS |
---|---|---|---|
Aqueous waste Leuckart step 1 | |||
APAAN | ND | − | − |
BMK | ND | ND | − |
NFA | ND | + | + |
Amphetamine | − | − | − |
Aqueous waste Leuckart step 2 | |||
APAAN | ND | − | − |
BMK | ND | ND | − |
NFA | ND | + | + |
Amphetamine | + | + | + |
Aqueous waste | |||
Steam distillation | |||
APAAN | ND | − | − |
BMK | ND | ND | + |
NFA | ND | − | − |
Amphetamine | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiss, R.; Hauser, F.; Ehlert, S.; Pütz, M.; Zimmermann, R. Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories. Appl. Sci. 2021, 11, 3754. https://doi.org/10.3390/app11093754
Reiss R, Hauser F, Ehlert S, Pütz M, Zimmermann R. Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories. Applied Sciences. 2021; 11(9):3754. https://doi.org/10.3390/app11093754
Chicago/Turabian StyleReiss, René, Frank Hauser, Sven Ehlert, Michael Pütz, and Ralf Zimmermann. 2021. "Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories" Applied Sciences 11, no. 9: 3754. https://doi.org/10.3390/app11093754
APA StyleReiss, R., Hauser, F., Ehlert, S., Pütz, M., & Zimmermann, R. (2021). Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories. Applied Sciences, 11(9), 3754. https://doi.org/10.3390/app11093754