Relation of EDL Forces between Clay Particles Calculated by Different Methods
Abstract
:1. Introduction
2. Analysis on the Previous Calculation Methods of EDL Force between Clay Particles
2.1. Previous Methods
2.2. Analysis
3. Illustration
3.1. Simulation Scheme
3.2. Simulation Results
3.3. Discussion
4. Conclusions
- (1)
- The integration of electrostatic force density, i.e., Maxwell stress gradient over a domain including one particle and surrounding electrolyte, or the integration of the potential and Maxwell stress along the complete boundary enclosing a multiply connected domain in which the surrounding electrolyte and the clay particle are separated, are the same osmotic repulsive force. However, the divergence between them will be inevitably observed in the numerical solution, and it increases nonlinearly with the surface potential, angle, and distance between clay particles.
- (2)
- The integration of Maxwell stress along the partial boundary enclosing a simply connected domain within which one particle exists represents the contribution of electrical (Maxwell) attractive stress. However, the integration of the potential along the same partial boundary denotes the osmotic repulsive force.
- (3)
- The integration of Maxwell stress exactly on the surface of the clay particle is in fact the total EDL force between clay particles. However, it is impractical to calculate a reasonable force by means of numerical method.
- (4)
- Although the calculated total repulsive stress is independent of its position and size theoretically, it is recommended that the distance between the integral box and the particle should be at least 10 times the thickness of the particle, based on the present numerical simulations.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948. [Google Scholar]
- Van Olphen, H. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Lv, K.; Liu, J.; Jin, J.; Sun, J.; Huang, X.; Liu, J.; Guo, X.; Hou, Q.; Zhao, J.; Liu, K.; et al. Synthesis of a novel cationic hydrophobic shale inhibitor with preferable wellbore stability. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128274. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, R.; Wang, Y.; Sun, S. Swelling pressure of montmorillonite with multiple water layers at elevated temperatures and water pressures: A molecular dynamics study. Appl. Clay Sci. 2021, 201, 105924. [Google Scholar] [CrossRef]
- Du, J.; Zhou, A.; Lin, X.; Bu, Y.; Kodikara, J. Prediction of swelling pressure of expansive soil using an improved molecular dynamics approach combining diffuse double layer theory. Appl. Clay Sci. 2021, 203, 105998. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Peng, C.; Min, F.; Song, S. Salt coagulation or flocculation? In situ zeta potential study on ion correlation and slime coating with the presence of clay: A case of coal slurry aggregation. Environ. Res. 2020, 189, 109875. [Google Scholar] [CrossRef]
- Vitale, E.; Deneele, D.; Russo, G. Microstructural investigations on plasticity of lime-treated soil. Minerals 2020, 10, 386. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, Y.; Zhang, J.; Zhang, C.; Ma, D.; Chen, L.; Cai, T. Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil. Geoderma 2020, 362, 114088. [Google Scholar]
- Zhou, H.; Chen, M.; Zhu, R.; Lu, X.; Zhu, J.; He, H. Coupling between clay swelling/collapse and cationic partition. Geochim. Cosmochim. Acta 2020, 285, 78–99. [Google Scholar] [CrossRef]
- Jin, X.; Yang, W.; Gao, X.; Zhao, J.-Q.; Li, Z.; Jiang, J. Modeling the unfrozen water content of frozen soil based on the absorption effects of clay surfaces. Water Resour. Res. 2020, 56, e2020WR027482. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, F.; Chen, Y.; Yang, H.; Saeedi, A.; Hossain, M. Effect of electrical double layer and ion exchange on low salinity EOR in a pH controlled system. J. Pet. Sci. Eng. 2019, 174, 418–424. [Google Scholar] [CrossRef]
- Abraham, T.; Lam, N.; Xu, J.; Zhang, D.; Wadhawan, H.; Kim, H.J.; Lee, M.; Thundat, T. Collapse of house-of-cards clay structures and corresponding tailings dewatering induced by alternating electric fields. Dry. Technol. 2019, 37, 1053–1067. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.; Xu, H.; Sun, X.; Zhang, Z.; Ye, G. DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Powder Technol. 2018, 330, 147–151. [Google Scholar] [CrossRef]
- Scarratt, L.R.J.; Kubiak, K.; Maroni, P.; Trefalt, G.; Borkovec, M. Structural and double layer forces between silica surfaces in suspensions of negatively charged nanoparticles. Langmuir 2020, 36, 14443–14452. [Google Scholar] [CrossRef]
- Stojimirovicć, B.; Vis, M.; Tuinier, R.; Philipse, A.P.; Trefalt, G. Experimental evidence for algebraic double-layer forces. Langmuir 2020, 36, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Liu, H.; Li, Y.; Liu, X.; Tian, R.; Li, R.; Li, H. AFM measurements of Hofmeister effects on clay mineral particle interaction forces. Appl. Clay Sci. 2020, 186, 105443. [Google Scholar] [CrossRef]
- Smith, A.M.; Borkovec, M.; Trefalt, G. Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 2020, 275, 102078. [Google Scholar] [CrossRef]
- Bolt, G.H. Physico-chemical analysis of the compressibility of pure clays. Geotechnique 1956, 6, 86–93. [Google Scholar] [CrossRef]
- Bharat, T.V.; Sridharan, A. Prediction of compressibility data for highly plastic clays using diffuse double-layer theory. Clays Clay Miner. 2015, 63, 30–42. [Google Scholar] [CrossRef]
- Bayesteh, H.; Mirghasemi, A.A. Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays. Comput. Geotech. 2013, 48, 146–155. [Google Scholar] [CrossRef]
- Yuan, G.; Xiong, Y. A holistic computational model for prediction of clay suspension structure. Int. J. Sediments Res. 2019, 34, 345–354. [Google Scholar]
- Bayesteh, H.; Hoseini, A. Effect of mechanical and electro-chemical contacts on the particle orientation of clay minerals during swelling and sedimentation: A DEM simulation. Comput. Geotech. 2021, 130, 103913. [Google Scholar] [CrossRef]
- Smith, D.W.; Narsilio, G.A.; Pivonka, P. Numerical particle-scale study of swelling pressure in clays. KSCE J. Civ. Eng. 2009, 13, 273–279. [Google Scholar] [CrossRef]
- Anandarajah, A.; Amarasinghe, P.M. Discrete-element study of the swelling behaviour of Na-montmorillonite. Geótechnique 2013, 63, 674–681. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K.I. Fundamentals of Soil Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Aminpour, P.; Sjoblom, K.J. Multi-scale modelling of kaolinite triaxial behaviour. Géotech. Lett. 2019, 9, 178–185. [Google Scholar] [CrossRef]
- Jaradat, K.A.; Abdelaziz, S.L. On the use of discrete element method for multi-scale assessment of clay behavior. Comput. Geotech. 2019, 112, 329–341. [Google Scholar] [CrossRef]
- Anandarajah, A.; Lu, N. Numerical study of the electrical double-layer repulsion between non-parallel clay particles of finite length. Int. J. Numer. Anal. Methods Geomech. 1991, 15, 683–703. [Google Scholar] [CrossRef]
- Grodzinsky, A.J. Fields, Forces, and Flows in Biological Systems; Garland Science: Oxford, UK, 2011. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Shang, X.Y.; Hu, N.; Zhou, G.Q. Calculation of the repulsive force between two clay particles. Comput. Geotech. 2015, 69, 272–278. [Google Scholar] [CrossRef]
- Lu, N. Numerical Study of the Electrical Double-Layer Repulsion between Non-Parallel Clay Particles of Finite Length; The Johns Hopkins University: Baltimore, MD, USA, 1990. [Google Scholar]
- Ohshima, H. Theory of Colloid and Interfacial Electric Phenomena; Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Maeda, H.; Maeda, Y. Numerical studies on electrical interaction forces and free energy between colloidal plates of finite size. Langmuir 2020, 36, 214–222. [Google Scholar] [CrossRef]
- Le Crom, S.; Tournassat, C.; Robinet, J.-C.; Marry, V. Influence of polarizability on the prediction of the electrical double layer structure in a clay mesopore: A molecular dynamics study. J. Phys. Chem. C 2020, 124, 6221–6232. [Google Scholar] [CrossRef]
- Liu, X.; Feng, B.; Tian, R.; Li, R.; Tang, Y.; Wu, L.; Ding, W.; Li, H. Electrical double layer interactions between soil colloidal particles: Polarization of water molecule and counterion. Geoderma 2020, 380, 114693. [Google Scholar] [CrossRef]
- Misra, R.P.; de Souza, J.P.; Blankschtein, D.; Bazant, M.Z. Theory of surface forces in multivalent electrolytes. Langmuir 2019, 35, 11550–11565. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, R.M.; Schroeder, C.; Charlier, R. Chemo-mechanical interactions in clay: A correlation between clay mineralogy and Atterberg limits. Appl. Clay Sci. 2004, 26, 351–358. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Hecht, F. New development in FreeFem++. J. Numer. Math. 2012, 20, 251–265. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions or electrolytes. Prog. Surf. Sci. 1941, 14, 633–662. [Google Scholar] [CrossRef]
Factors | Levels | |||
---|---|---|---|---|
: Angle between two particles | 0° | 30° | 60° | 120° |
d: Minimum distance between two particles | 0.25 | 0.5 | 1.0 | 2.0 |
: Potential on the particle surface | 1.25 | 2.5 | 5.0 | 10.0 |
Cases of Integral Domain | Description of the Chosen Domain |
---|---|
(1) | The symmetrical half of the numerical model |
(2) | Middle plane is the bottom boundary, and xR = yU = xL = 2 |
(3) | Middle plane is the bottom boundary, and xR = yU = xL = 1 |
(4) | xR = xL = yU = yD = 0.5 while middle plane is the bottom boundary if yD < 0.5 |
(5) | xR = xL = yU = yD = 0.1 |
(6) | xR = xL = yU = yD = 0.01 |
(7) | xR = xL = yU = yD = 0.001 |
(8) | xR = xL = yU = yD = 0.0001 |
Forces Calculated by | (3) | (2) | (5) | (4) | (4) | ||
---|---|---|---|---|---|---|---|
Cases of Integral Domain | |||||||
(1) | 41.9181 | 41.919 | 42.6284 | −4.08057 | 45.99957 | E. 55.5535 A. 44.1105 | |
(2) | 41.4821 | 41.4829 | 40.8156 | −4.51652 | 45.99942 | ||
(3) | 37.8506 | 37.8502 | 36.9956 | −8.14821 | 45.99841 | ||
(4) | 25.4717 | 25.4725 | 24.8562 | −20.5264 | 45.9989 | ||
(5) | 11.7165 | 11.7162 | 11.1427 | −34.2799 | 45.9961 | ||
(6) | 2.41696 | 2.4151 | 0.756983 | −43.6094 | 46.0245 | ||
(7) | 0.267132 | 0.267424 | −1.74149 | −49.4987 | 49.766124 | ||
(8) | 0.0270656 | 0.0270943 | 0.854463 | −45.4325 | 45.4595943 | ||
(1) | 14.5612 | 14.5814 | 11.0568 | −2.21389 | 16.79529 | E. 9.9963 A. 16.2762 | |
(2) | 14.3739 | 14.394 | 10.596 | −2.40119 | 16.79519 | ||
(2) | 12.9334 | 12.9505 | 8.76133 | −3.84458 | 16.79508 | ||
(4) | 9.08348 | 9.10003 | 5.13292 | −7.6949 | 16.79493 | ||
(5) | 5.52526 | 5.54211 | 1.87563 | −11.2503 | 16.79241 | ||
(6) | 4.69334 | 4.71906 | 0.150223 | −11.9472 | 16.66626 | ||
(7) | 4.54029 | 4.56411 | −1.66645 | −14.2617 | 18.82581 | ||
(8) | 4.52836 | 4.54737 | −0.016742 | −12.4096 | 16.95697 | ||
(1) | 8.57801 | 8.56983 | 7.76551 | −1.99145 | 10.56128 | E. 13.5686 A. 11.17 | |
(2) | 8.4642 | 8.45751 | 7.26571 | −2.10353 | 10.56104 | ||
(3) | 7.59411 | 7.58868 | 6.65608 | −2.97219 | 10.56087 | ||
(4) | 5.31143 | 5.35323 | 2.58477 | −5.20807 | 10.5613 | ||
(5) | 3.2634 | 3.30397 | 1.78368 | −7.25474 | 10.55871 | ||
(6) | 2.81201 | 2.85691 | 5.17412 | −7.70819 | 10.5651 | ||
(7) | 2.75684 | 2.7515 | 3.18902 | −8.89642 | 11.64792 | ||
(8) | 2.74428 | 2.74146 | 11.8245 | −8.30761 | 11.04907 | ||
(1) | 5.21578 | 5.2126 | 8.94309 | −1.85451 | 7.06711 | E. 9.33596 A. 6.87327 | |
(2) | 5.13841 | 5.13542 | 9.45913 | −1.93177 | 7.06719 | ||
(3) | 4.53579 | 4.5382 | 9.2586 | −2.53251 | 7.07071 | ||
(4) | 3.08634 | 3.07855 | 8.58533 | −3.98769 | 7.06624 | ||
(5) | 1.76454 | 1.75726 | 2.77421 | −6.53748 | 8.29474 | ||
(6) | 1.39752 | 1.412 | 9.00203 | −6.24937 | 7.66137 | ||
(7) | 1.31954 | 1.31844 | −2.34152 | 1.28711 | 0.03133 | ||
(8) | 1.32381 | 1.32289 | −1.93446 | 3.53418 | −2.21129 | ||
C1 simulation results with various distances. | |||||||
Forces Calculated by | (3) | (2) | (5) | (4) | (4) | ||
Cases of Integral Domain | |||||||
(1) | 26.6611 | 26.6727 | 18.447 | −8.54981 | 35.22251 | E. 24.8521 A. 33.4008 | |
(2) | 26.5483 | 26.5606 | 19.388 | −8.66178 | 35.22238 | ||
(3) | 25.6743 | 25.6871 | 19.4043 | −9.53509 | 35.22219 | ||
(4) | 23.3468 | 23.3596 | 17.2951 | −11.8598 | 35.2194 | ||
(5) | 14.0126 | 14.0277 | 7.78747 | −21.204 | 35.2317 | ||
(6) | 10.136 | 10.1407 | −10.2776 | −25.2685 | 35.4092 | ||
(7) | 9.62126 | 9.63385 | −0.486377 | −33.4616 | 43.09545 | ||
(8) | 9.56283 | 9.5787 | −11.1003 | −28.9482 | 38.5269 | ||
(1) | 17.1749 | 17.1909 | 10.2881 | −4.70608 | 21.89698 | E. 15.1737 A. 18.6278 | |
(2) | 17.0644 | 17.0782 | 11.8684 | −4.81875 | 21.89695 | ||
(3) | 16.1822 | 16.1987 | 9.44785 | −5.69796 | 21.89666 | ||
(4) | 13.849 | 13.864 | 8.26698 | −8.03038 | 21.89438 | ||
(5) | 7.53681 | 7.5523 | 1.70729 | −14.3467 | 21.899 | ||
(6) | 6.0884 | 6.07494 | 7.13563 | −15.9807 | 22.05564 | ||
(7) | 5.82044 | 5.83365 | 19.5341 | −22.4836 | 28.31725 | ||
(8) | 5.78831 | 5.80616 | 1.51359 | −17.6729 | 23.47906 | ||
(1) | 8.57801 | 8.56983 | 7.76551 | −1.99145 | 10.56128 | E. 13.5686 A. 11.17 | |
(2) | 8.4642 | 8.45751 | 7.26571 | −2.10353 | 10.56104 | ||
(3) | 7.59411 | 7.58868 | 6.65608 | −2.97219 | 10.56087 | ||
(4) | 5.31143 | 5.35323 | 2.58477 | −5.20807 | 10.5613 | ||
(5) | 3.2634 | 3.30397 | 1.78368 | −7.25474 | 10.55871 | ||
(6) | 2.81201 | 2.85691 | 5.17412 | −7.70819 | 10.5651 | ||
(7) | 2.75684 | 2.7515 | 3.18902 | −8.89642 | 11.64792 | ||
(8) | 2.74428 | 2.74146 | 11.8245 | −8.30761 | 11.04907 | ||
(1) | 2.77782 | 2.79098 | 0.961339 | −0.531701 | 3.322681 | E. 0.93001 A. 1.95205 | |
(2) | 2.67181 | 2.68379 | −1.28608 | −0.639291 | 3.323081 | ||
(3) | 1.86347 | 1.87736 | 3.04117 | −1.44393 | 3.32129 | ||
(4) | −0.159159 | −0.14411 | −0.83373 | −3.46682 | 3.32271 | ||
(5) | 0.961793 | 0.978263 | −1.8733 | −2.34286 | 3.321123 | ||
(6) | 0.87742 | 0.876537 | −4.12355 | −2.4559 | 3.332437 | ||
(7) | 0.834751 | 0.850943 | −3.27306 | −2.95893 | 3.809873 | ||
(8) | 0.830091 | 0.848327 | −23.2206 | −2.21347 | 3.061797 | ||
C2 simulation results with various potentials. | |||||||
Forces Calculated by | (3) | (2) | (5) | (4) | (4) | ||
Cases of Integral Domain | |||||||
(1) | 0.808423 | 0.808461 | 0.684227 | −0.222941 | 1.031402 | E. 0.940827 A. 1.00577 | |
(2) | 0.796192 | 0.796227 | 0.629184 | −0.235144 | 1.031371 | ||
(3) | 0.705504 | 0.705547 | 0.576616 | −0.325804 | 1.031351 | ||
(4) | 0.505749 | 0.505777 | 0.393089 | −0.525623 | 1.0314 | ||
(5) | 0.281558 | 0.281601 | 0.176257 | −0.749722 | 1.031323 | ||
(6) | 0.231156 | 0.231193 | 0.126488 | −0.813081 | 1.044274 | ||
(7) | 0.225944 | 0.225982 | 0.709761 | −1.03674 | 1.262722 | ||
(8) | 0.225412 | 0.225466 | −0.239472 | −0.914679 | 1.140145 | ||
(1) | 2.9725 | 2.97282 | 2.53695 | −0.773569 | 3.746389 | E. 3.50645 A. 3.61858 | |
(2) | 2.92954 | 2.92985 | 2.28648 | −0.816429 | 3.746279 | ||
(3) | 2.60693 | 2.60729 | 2.13561 | −1.13892 | 3.74621 | ||
(4) | 1.86276 | 1.86301 | 1.46956 | −1.88342 | 3.74643 | ||
(5) | 1.06551 | 1.06588 | 0.698398 | −2.68025 | 3.74613 | ||
(6) | 0.879232 | 0.879531 | 0.551997 | −2.91542 | 3.794951 | ||
(7) | 0.857727 | 0.858068 | 2.94154 | −3.7099 | 4.567968 | ||
(8) | 0.855445 | 0.855904 | −1.39334 | −3.24253 | 4.098434 | ||
(1) | 8.57801 | 8.56983 | 7.76551 | −1.99145 | 10.56128 | E. 13.5686 A. 11.17 | |
(2) | 8.4642 | 8.45751 | 7.26571 | −2.10353 | 10.56104 | ||
(3) | 7.59411 | 7.58868 | 6.65608 | −2.97219 | 10.56087 | ||
(4) | 5.31143 | 5.35323 | 2.58477 | −5.20807 | 10.5613 | ||
(5) | 3.2634 | 3.30397 | 1.78368 | −7.25474 | 10.55871 | ||
(6) | 2.81201 | 2.85691 | 5.17412 | −7.70819 | 10.5651 | ||
(7) | 2.75684 | 2.7515 | 3.18902 | −8.89642 | 11.64792 | ||
(8) | 2.74428 | 2.74146 | 11.8245 | −8.30761 | 11.04907 | ||
(1) | 32.5597 | 14.1146 | 40.9626 | −3.05201 | 17.16661 | E. 141.335 A. 97.3959 | |
(2) | 27.816 | 13.944 | −47.8924 | −3.22182 | 17.16582 | ||
(3) | 24.5412 | 12.5918 | −43.9021 | −4.57397 | 17.16577 | ||
(4) | 25.7657 | 8.69255 | 16.5763 | −8.47474 | 17.16729 | ||
(5) | 31.3253 | 5.74476 | −29.7056 | −11.409 | 17.15376 | ||
(6) | 25.8531 | 6.03414 | 35.635 | −12.0687 | 18.10284 | ||
(7) | 24.6186 | 5.29568 | 67.5614 | −24.9577 | 30.25338 | ||
(8) | 32.5597 | 5.298 | −251.741 | −19.4528 | 24.7508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.-Y.; Duan, K.; Kuang, L.-F.; Zhu, Q.-Y. Relation of EDL Forces between Clay Particles Calculated by Different Methods. Appl. Sci. 2022, 12, 5591. https://doi.org/10.3390/app12115591
Shang X-Y, Duan K, Kuang L-F, Zhu Q-Y. Relation of EDL Forces between Clay Particles Calculated by Different Methods. Applied Sciences. 2022; 12(11):5591. https://doi.org/10.3390/app12115591
Chicago/Turabian StyleShang, Xiang-Yu, Ke Duan, Lian-Fei Kuang, and Qi-Yin Zhu. 2022. "Relation of EDL Forces between Clay Particles Calculated by Different Methods" Applied Sciences 12, no. 11: 5591. https://doi.org/10.3390/app12115591
APA StyleShang, X. -Y., Duan, K., Kuang, L. -F., & Zhu, Q. -Y. (2022). Relation of EDL Forces between Clay Particles Calculated by Different Methods. Applied Sciences, 12(11), 5591. https://doi.org/10.3390/app12115591