Framework for Malware Triggering Using Steganography
Abstract
:1. Introduction
2. Background and Related Work
2.1. Exploit Delivery Techniques
2.2. Steganography
2.3. Stegosploit
2.4. Related Work
3. Methodology
3.1. Geolocation Techniques
3.1.1. W3C Geolocation API Method
3.1.2. IP Geolocation Services
3.1.3. Wi-Fi Positioning Systems
3.2. Hiding Javascript Exploit Code and Geolocation Code in Image Pixels
3.3. Creating HTML + PNG Polyglot
3.4. Exploit Delivery
4. Evaluation
4.1. Experiment Environment
4.2. Results and Analysis
4.2.1. Geolocation Services Result and Analysis
- The first parameter is the precision of each service. In our study, the precision attribute refers to the level of accuracy of the latitude and longitude coordinates estimated by the service. It is specified in meters and must be a non-negative real number;
- The second parameter is accuracy, defined as the difference between measured coordinates (longitude and latitude) and the device’s actual position during the measurement. This difference in meters was calculated using Python scripts, and it was validated using the distance calculator tool [34].
W3C Geolocation API
IP Geolocation
WI-FI Positioning Services
4.2.2. The Stego-Image Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Malware | Discovery Date | Carrier Type | Message | Delivery Method | Target |
---|---|---|---|---|---|
Shady RAT(the first attack to use steganography). | 2006 | JPEG images, HTML pages | Hiding instructions that would allow distant servers to access local files on the infected host machine. | Spamming emails and compromised websites are used to disseminate the redirect link of web attackers. The receiver then opens a specially crafted email message (phishing). | It targets various vulnerabilities found in Microsoft Windows, Mozilla Firefox, and other software. |
Duqu | 2011 | PNG image | exfiltrated data | Industrial Control Systems (ICS). | |
Lurk Downloader | 2014 | BMP and PNG image | Hiding an encrypted URL to download additional components of malware (second payload). | Victims are infected by HTML <iframes> on hacked websites that have a Flash-based exploit. | Committing click fraud is the intent behind this malware. |
Vawtrak/Neverquest malware | 2015 | Favicons | hiding URL to downloading its configuration file. | Spread via phishing attacks and websites that are hacked. | Financial malware. |
The Gatak/Stegoloader malware | 2015 | PNG image | malicious code | Gatak sample showing two executable files inside a compressed archive. The first is the installer file for the software license cracking tool, and the other is Gatak malware. | trojan or downloader for stealing data and delivering ransomware |
Stegosploit | 2015 | PNG, JEPG image | Drive-by browser exploits(The Use-After-Free vulnerability in Internet Explorer (CVE-2014-0282) +HTML and JavaScript decoder code | The polyglot seems like an image, but when loaded, it is decoded and activated in a victim’s browser. | It exploits browsers’ vulnerabilities |
AdGholas malware | 2016 | images, text, and HTML code | Hiding encrypted malicious JavaScript code | Banner advertisements have been used by criminals to spread malware. | malvertising attacks |
Cerber ransomware | 2016 | JPEG file | Embedding malicious executable | Spread by the Microsoft Office 365 cloud platform. | Various sectors |
Stegano/Astrum exploit kit | 2016 | PNG image | Hiding malicious code inside advertising banners | An infected ad. | malvertising campaign |
DNSChanger exploit kit | 2016 | PNG image | Hiding malware, the AES encryption key inside an innocent ad to decode network traffic | Malware ads, also called malvertising. | The purpose of this malware is to hit the routers of users instead of their browsers. |
SyncCrypt ransomware | 2017 | JPEG image | Embedding part of the core ransomware components | WSF (Windows Script File) attachments in compromised emails. | Generic Internet users |
Powload malware | 2018 | PNG file | embedding malicious scripts in image | By phishing email campaigns containing documents embedded with malicious macro code. | Stealing personal data from the aim and other malicious activities. |
VeryMal malware’s | 2019 | The JPEG image is a tiny white bar | malicious JavaScript code | Through ad images. | The MAC OS. |
Sundown exploit kit | hiding data in white PNG files | exfiltrating user data or hiding the malicious code delivered to the victims | Malvertising campaigns. | It exploits many defects, including Internet Explorer Jscript handling (IE). | |
Ursnif malware | PNG image | malicious PowerShell script | Distributed via spam email carrying fake documents (Microsoft Excel documents) like a buying order. | Banking malware. |
References
- Truong, T.C.; Diep, Q.B.; Zelinka, I. Artificial intelligence in the cyber domain: Offense and defense. Symmetry 2020, 12, 410. [Google Scholar] [CrossRef]
- Rudd, E.M.; Rozsa, A.; Günther, M.; Boult, T.E. A Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions. IEEE Commun. Surv. Tutorials 2017, 19, 1145–1172. [Google Scholar] [CrossRef]
- Siddiq, M.A.; Ghani, N. Critical Analysis on Advanced Persistent Threats. Int. J. Comput. Appl. 2016, 141, 46–50. [Google Scholar] [CrossRef]
- Messer, A.; Medairy, B. The Future of Cyber Defense… Going on the Offensive. Cyber Def. Rev. 2018, 3, 37–40. [Google Scholar]
- Cohen, A.; Nissim, N.; Elovici, Y. MalJPEG: Machine Learning Based Solution for the Detection of Malicious JPEG Images. IEEE Access 2020, 8, 19997–20011. [Google Scholar] [CrossRef]
- Jung, D.S.; Lee, S.J.; Euom, I.C. Imagedetox: Method for the neutralization of malicious code hidden in image files. Symmetry 2020, 12, 1621. [Google Scholar] [CrossRef]
- Vaidya, N.; Rughani, P. An Efficient Technique to Detect Stegosploit Generated Images on Windows and Linux Subsystem on Windows. Int. J. Comput. Sci. Eng. 2019, 7, 21–26. [Google Scholar] [CrossRef]
- Beatty, M. The Current and Future Threat of Steganography in Malware Command and Control. Ph.D. Thesis, Utica College, Utica, NY, USA, 2019. [Google Scholar]
- Brunot, J.M. The Increased Use of Steganography by Malware Creators to Obfuscate Their Malicious Code. Ph. D. Thesis, Utica College, Utica, NY, USA, 2019. [Google Scholar]
- Dudheria, R. Attacking Smartphones by Sharing Innocuous Images via QR Codes. In Proceedings of the 12th Annual Symposium on Information Assurance (Asia ‘17), Albany, NY, USA, 7–8 June 2017; pp. 86–92. [Google Scholar]
- Ko, H.-J.; Huang, C.-T.; Horng, G.; Wang, S.-J. Embedding Advanced Persistent Threat in Steganographic Images. In Proceedings of the Security with Intelligent Computing and Big-Data Services 2019, New Taipei City, Taiwan, 4–6 December 2019; Jain, L.C., Peng, S.-L., Wang, S.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–17. [Google Scholar]
- Jeyasekar, A.; Bisht, D.; Dua, A. Analysis of exploit delivery technique using steganography. Indian J. Sci. Technol. 2016, 9, 102075. [Google Scholar] [CrossRef]
- Andriesse, D.; Bos, H. Instruction-level steganography for covert trigger-based malware. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, London, UK, 10–11 July 2014; Springer: Cham, Switzerland, 2014; Volume 8550 LNCS, pp. 41–50. [Google Scholar] [CrossRef]
- McGraw, G.; Morrisett, G. Attacking malicious code: A report to the Infosec Research Council. IEEE Softw. 2000, 17, 33–41. [Google Scholar] [CrossRef]
- Saeed, I.A.; Selamat, A.; Abuagoub, A.M.A. A Survey on Malware and Malware Detection Systems. Int. J. Comput. Appl. 2013, 67, 25–31. [Google Scholar] [CrossRef]
- Mansoori, M.; Welch, I. Geolocation Tracking and Cloaking of Malicious Web Sites. In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, 14–17 October 2019; pp. 274–281. [Google Scholar] [CrossRef]
- Khaldi, A. Steganographic Techniques Classification According to Image Format. Int. Ann. Sci. 2019, 8, 143–149. [Google Scholar] [CrossRef]
- Wiseman, S. Stegware–Using Steganography for Malicious Purposes; ResearchGat: Berlin, Germany, 2017. [Google Scholar]
- Dhawan, S.; Gupta, R. Analysis of various data security techniques of steganography: A survey. Inf. Secur. J. 2020, 30, 63–87. [Google Scholar] [CrossRef]
- Evsutin, O.; Melman, A.; Meshcheryakov, R.; Karakus, S.; Avci, E.; Arroyo, J.C.T.; Arroyo, J.C.T.; Kadhim, I.J.; Premaratne, P.; Vial, P.J.; et al. Critical Analysis on Advanced Persistent Threats. IEEE Access 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Nagy, B. PoC||GTFO 08. Int. J. PoC||GTFO 2015, 1–64. Available online: https://www.alchemistowl.org/pocorgtfo/ (accessed on 21 April 2022).
- Cabaj, K.; Caviglione, L.; Mazurczyk, W.; Wendzel, S.; Woodward, A.; Zander, S. The new threats of information hiding: The road ahead. IT Prof. 2018, 20, 31–39. [Google Scholar] [CrossRef]
- Samba.org Samba 4.5.9—Release Notes. Available online: https://www.samba.org/samba/history/samba-4.5.9.html (accessed on 17 May 2022).
- Kwon, H.; Kim, Y. BlindNet backdoor: Attack on deep neural network using blind watermark. Multimed. Tools Appl. 2022, 81, 6217–6234. [Google Scholar] [CrossRef]
- Atencio, Y.P.; Ubalde Enriquez, R.; Ibarra, M.J.; Huanca Marin, J. How to locate where a device is using a web application. In Proceedings of the 15th Latin American Conference on Learning Technologies, LACLO 2020, Loja, Ecuador, 19–23 October 2020; pp. 1–6. [Google Scholar]
- Steiner, T.; Kostiainen, A.; Kruisselbrink, M. Geolocation in the browser from Google gears to geolocation sensors. In Proceedings of the WWW ‘19: Companion 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 913–918. [Google Scholar] [CrossRef]
- Holdener, A.T. HTML5 Geolocation; O’Reilly Media, Inc.: Newton, MA, USA, 2011; ISBN 9780874216561. [Google Scholar]
- Kysela, J. Comparison of web applications geolocation services. In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2014; pp. 449–453. [Google Scholar] [CrossRef]
- Pierre, N.J.; Fan, X.; Daniel, G.; Claude, G.J. Cross-Platform Mobile Geolocation Applications Based on PhoneGap. Lect. Notes Softw. Eng. 2015, 3, 78–82. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, N.; Chen, X.; Gao, L. Wasserstein Metric-Based Location Spoofing Attack Detection in WiFi Positioning Systems. Secur. Commun. Netw. 2021, 2021, 8817569. [Google Scholar] [CrossRef]
- Skyhook Skyhook|Location Technology Provider. Available online: https://www.skyhook.com/ (accessed on 8 April 2022).
- Google Overview|Geolocation API|Google Developers. Available online: https://developers.google.com/maps/documentation/geolocation/overview (accessed on 8 April 2022).
- Shah, S.; Vaidya, N.; Rughani, P. “Saumil Shah,” Hack.Lu. 2015, pp. 21–26. Available online: https://conference.hitb.org/hitbsecconf2015ams/wp-content/uploads/2015/02/D1T1-Saumil-Shah-Stegosploit-Hacking-with-Pictures.pdf (accessed on 18 March 2022).
- CSGNetwork.com. “GPS Latitude and Longitude Distance Calculator,” CSG Computer Support Group, Inc. 2018. Available online: http://www.csgnetwork.com/gpsdistcalc.html (accessed on 23 February 2022).
- Zandbergen, P.A. Comparison of WiFi positioning on two mobile devices. J. Locat. Based Serv. 2012, 6, 35–50. [Google Scholar] [CrossRef]
- Arroyo, J.C. LSB Image Steganography with Data Compression Technique Using Goldbach G0 Code Algorithm. Int. J. Emerg. Trends Eng. Res. 2020, 8, 3259–3264. [Google Scholar] [CrossRef]
- Evsutin, O.; Melman, A.; Meshcheryakov, R. Digital Steganography and Watermarking for Digital Images: A Review of Current Research Directions. IEEE Access 2020, 8, 166589–166611. [Google Scholar] [CrossRef]
- Hossain, S.; Mukhopadhyay, S.; Ray, B.; Ghosal, S.K.; Sarkar, R. A secured image steganography method based on ballot transform and genetic algorithm. Multimed. Tools Appl. 2022, 81. [Google Scholar] [CrossRef]
- VirusTotal VirusTotal-Home. 2021. Available online: https://www.virustotal.com/gui/home/upload (accessed on 30 March 2022).
Property | Description |
---|---|
Latitude | The device’s geographic latitude coordinate is measured in decimal degrees. |
Longitude | The device’s geographic longitude coordinate is measured in decimal degrees. |
Altitude | The device’s geographic height was measured meters above the WGS 84 ellipsoid. |
Accuracy | The accuracy of the latitude and longitude coordinates in meters. It must be supported by all implementations. |
AltitudeAccuracy | The accuracy of the height (altitude coordinate), is specified in meters. |
Heading | The device’s direction of travel, measured in degrees, where 0° ≤ heading < 360°, counting clockwise relative to true north. |
Speed | The device’s current ground speed is measured in meters per second. |
OS Name | OS Version | Browser | Browser Version |
---|---|---|---|
Windows | 10 | Google Chrome | 98.0.4758.102 |
Firefox | 95.0.2 | ||
Microsoft Edge | 98.0.1108.62 | ||
MacBook Air | 11.1 | Google Chrome | 98.0.4758.102 |
Firefox | 97.0.1 | ||
Microsoft Edge | 98.0.1108.62 | ||
Safari | 14.0.2 | ||
iPhone | 11 pro max | Google Chrome | 98.0.4758.97 |
Firefox Daylight | 97.0 | ||
Microsoft Edge | 98.0.1108.62 | ||
Safari | 15 | ||
Android | 10 | Google Chrome | 91.0.4472.134 |
Microsoft Edge | 95.0.1020.55 |
Browser | Coordinates | Analysis (Meters) |
---|---|---|
Google Chrome | Latitude: 21.485811 Longitude:39.1925048 Timestamp: 3 February 2022, 8:42:42 p.m. | Precision: 28,543.920874903582 Accuracy: 331,506.93051 |
Firefox | Latitude: 24.4509863 Longitude:39.5309932 Timestamp: 3 February 2022, 8:43:06 p.m. | Precision: 21.361 Accuracy: 5.1024715743 |
Microsoft Edge | Latitude: 24.450438 Longitude: 39.530746 Timestamp: 3 February 2022, 8:42:11 p.m. | Precision: 36 Accuracy: 61.040755015 |
Browser | Coordinates | Analysis (Meters) |
---|---|---|
Google Chrome | Latitude: 24.4509544 Longitude:39.5309543 Timestamp: 3 February 2022, 8:44:24 p.m. | Precision: 18.388 Accuracy: 3.7948552115 |
Firefox | Latitude: 24.450959 Longitude:39.5309692 Timestamp: 3 February 2022, 8:44:02 p.m. | Precision: 17.154 Accuracy: 2.8352362323 |
Microsoft Edge | Latitude: 24.452347 Longitude: 39.531178 Timestamp: 3 February 2022, 8:45:25 p.m. | Precision: 389 Accuracy: 157.54772225 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.4509405 Longitude:39.5309176 Timestamp: 3 February 2022, 9:03:23 p.m. | -- | Precision: 17.649 Accuracy: 7.1872030392 |
Firefox | Latitude: 24.451001562548395 Longitude: 39.53075815429659 Timestamp: 3 February 2022, 9:03:48 p.m. | Altitude: 659.213134765625 Altitude Accuracy: 10 | Precision: 65 Accuracy: 24.290212277 |
Microsoft Edge | Latitude: 24.450659 Longitude: 39.530815 Timestamp: 3 February 2022, 9:02:59 p.m. | -- | Precision: 30 Accuracy: 35.904529177 |
Safari | Latitude: 24.450751842638933 Longitude: 39.53074760137734 Timestamp: 3 February 2022, 9:02:25 p.m. | -- | Precision: 65 Accuracy: 32.179697398 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.4509419 Longitude:39.5309072 Timestamp: 3 February 2022, 9:05:46 p.m. | -- | Precision: 19.463 Accuracy: 8.2404029963 |
Firefox | Latitude: 24.45091764820717 Longitude: 39.53075805646881 Timestamp: 3 February 2022, 9:06:31 p.m. | Altitude: 659.0762939453125 Altitude Accuracy: 10 | Precision: 65 Accuracy: 23.474394577 |
Microsoft Edge | Latitude: 24.450583 Longitude: 39.530661 Timestamp: 3 February 2022, 9:06:10 p.m. | -- | Precision: 213 Accuracy: 51.773552946 |
Safari | Latitude: 24.451066477243643 Longitude: 39.53085197504793 Timestamp: 3 February 2022, 9:05:15 p.m. | -- | Precision: 65 Accuracy: 19.675868197 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.45109948924414 Longitude: 39.53092912346311 Timestamp: 3 February 2022, 8:52:37 p.m. | Altitude: 656.5878155622631 Altitude Accuracy: 7.636130020708702 Speed: 0.1448562741279602 | Precision: 58.37975215431486a Accuracy: 18.664453549 |
Firefox | Latitude: 24.451034831662177 Longitude: 39.530928998013366 Timestamp: 3 February 2022, 8:53:08 p.m. | Altitude: 656.5729167815927 Altitude Accuracy: 6.576576465643781 Heading: 84.16177075330282 Speed: 0.19107863306999207 | Precision: 21.269646468211825 Accuracy: 12.090165558 |
Microsoft Edge | Latitude: 24.450894677621474 Longitude: 39.53081615829184 Timestamp: 3 February 2022, 8:53:17 p.m. | Altitude: 655.1706981658936 Altitude Accuracy: 19.12166404724121 | Precision: 35 Accuracy: 18.18586397 |
Safari | Latitude: 24.45083244979642 Longitude: 39.53074778166829 Timestamp: 3 February 2022, 8:51:08 p.m. | Altitude: 656.4743852615356 Altitude Accuracy: 16.95233726501465 | Precision: 35 Accuracy: 27.179880045 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.450914035324114 Longitude: 39.530808338863366 Timestamp: 3 February 2022, 8:55:53 p.m. | Altitude: 656.5838843896648 Altitude Accuracy: 10.476290042817674 Heading: 328.4559806069246 Speed: 0.41548725962638855 | Precision: 23.890414647506027 Accuracy: 18.483235082 |
Firefox | Latitude: 24.450990773085895 Longitude: 39.53088104032759 Timestamp: 3 February 2022, 8:56:07 p.m. | Altitude: 656.5745322359726 Altitude Accuracy: 7.688099688915077 Speed: 0 | Precision: 20.335977974761448 Accuracy: 12.233179262 |
Microsoft Edge | Latitude: 24.450929117125384 Longitude: 39.530894994979825 Timestamp: 3 February 2022, 8:56:27 p.m. | Altitude: 656.5590492952482 Altitude Accuracy: 7.033216356919276 Heading: 171.32757269542145 Speed: 0.13296207785606384 | Precision: 16.74236877839259 Accuracy: 9.5602362843 |
Safari | Latitude: 24.45094193472298 Longitude: 39.53090227038583 Timestamp: 3 February 2022, 8:54:43 p.m. | Altitude: 656.638206269592 Altitude Accuracy: 6.7752706275769725 Speed: 0.1334974616765976 | Precision: 13.025194175201719 Accuracy: 8.7387849661 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.4511825 Longitude: 39.530874 Timestamp: 3 February 2022, 8:47:06 p.m. | -- | Precision: 37.5 Accuracy: 29.291476471 |
Microsoft Edge | Latitude: 24.4511825 Longitude: 39.530874 Timestamp: 3 February 2022, 8:47:36 p.m. | -- | Precision: 37.5 Accuracy: 29.291476471 |
Browser | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
Google Chrome | Latitude: 24.452440000000003 Longitude: 39.52885166666667 Timestamp: 3 February 2022, 8:48:52 p.m. | Altitude: 1226.2 Heading: 0 Speed: 0 | Precision: 11.199999809265137 Accuracy: 273.08956088 |
Microsoft Edge | Latitude: 24.451038 Longitude: 39.531013 Timestamp: 3 February 2022, 8:49:35 p.m. | -- | Precision: 35 Accuracy: 11.108112468 |
IP | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
DB-IP | “latitude”: 24.7136 “longitude”: 46.6753 | “city”: “Riyadh” “region”: “Riyadh “country”: “Saudi Arabia” | Accuracy: 722,882.94761 |
Maxmind GeoIP2 | “latitude”: 21.5168 “longitude”: 39.2192 | “city”: “ Jeddah” “region”: “ Mecca Region “country”: “Saudi Arabia, Asia” | Precision Radius: 200 km = 200,000 m Accuracy: 327,802.7072 |
IP2Location | “latitude”: 21.51694 “longitude”: 39.21917 | “city”: “ Jeddah” “ region”: “ Makkah al Mukarramah” “country”: “Saudi Arabia” | Accuracy: 327,787.51195 |
Ipinfo | “latitude”: 21.2703 “longitude”: 40.4158 | “city”: “Ta’if” “region”: “Mecca Region” “country”: “SA” | Accuracy: 365,083.7281 |
Skyhook Hyperlocal IP | “latitude”: 21.5168 “longitude”: 39.841141 | -- | Precision:694,224.0 Accuracy: 327,786.44829 |
Google Geolocation API | “latitude”: 24.4678656 “longitude”: 39.5804672 | -- | Precision:9490.098963240705 Accuracy: 5349.6971342 |
Ipregistry | “latitude”: 21.51675 “longitude”: 39.21913 | “city”: “Jeddah” “region”: “Makkah al Mukarramah” “country”: “Saudi Arabia” | Accuracy: 327,808.9383 |
Whois XML API | “latitude”: 24.68773 “longitude”: 46.72185 | “city”: “Riyadh” “region”: “Riyadh Region” “country”: “SA“ | Accuracy: 727,549.79284 |
IP | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|
DB-IP | “latitude”: 24.4926 “longitude”: 39.5857 | “city”: “Sulţānah” “region”: “Medina Region” “country”: “Saudi Arabia” | Accuracy: 7218.9267536 |
Maxmind GeoIP2 | “latitude”: 24.4662 “longitude”: 39.6168 | “city”: “Medina” “region”: “Medina Region” “country”: “Saudi Arabia, Asia” | Precision Radius: 200 km = 200,000 m Accuracy: 8849.2794528 |
IP2Location | “latitude”: 24.46861 “longitude”: 39.61417 | “city”: “Medina” “region”: “Al Madinah al Munawwarah” “country”: “Saudi Arabia” | Accuracy: 8645.0363188 |
Ipinfo | “latitude”: 24.4686 “longitude”: 39.6142 | “city”: “Medina” “region”: “Medina Region” “country”: “SA” | Accuracy: 8647.7410092 |
Skyhook Hyperlocal IP | “latitude”: 26.45756 “longitude”: 38.058708 | -- | Precision: 0.0 Accuracy: 267,627.79054 |
Google Geolocation API | “latitude”: 24.4714834 “longitude”: 39.5329976 | -- | Precision: 1207.4218113793675 Accuracy: 2293.1773689 |
Ipregistry | “latitude”: 24.46625 “longitude”: 39.61681 | “city”: “Medina” “region”: “Al Madinah al Munawwarah” “country”: “Saudi Arabia” | Accuracy: 8851.3385909 |
Whois XML API | “latitude”: 24.49258 “longitude”: 39.58572 | “city”: “Sulţānah” “region”: “Medina Region” “country”: “SA” | Accuracy: 7219.0531998 |
Service | Access Networks | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|---|
Google Geolocation API | wireless network (STC_4G) | lat: 24.4509747 lng: 39.530973 | -- | Precision: 36.312 Accuracy: 4.1073313992 |
wireless network (DSL) | lat: 24.4506757 lng: 39.5308182 | -- | Precision: 58.041 Accuracy: 34.132581461 | |
Skyhook Precision Location | wireless network (STC_4G) | lat: 24.450698 lng: 39.530818 | nap: 14 source: ‘wifi’ | Precision: 35 Accuracy: 32.028255422 |
wireless network (DSL) | lat: 24.450904 lng: 39.530993 | nap: 18 source: ‘wifi’ | Precision: 30 Accuracy: 4.0941457106 |
Service | Access Networks | Coordinates | Other Information | Analysis (Meters) |
---|---|---|---|---|
Google Geolocation API | wireless network (STC_4G) | lat: 24.4509806 lng: 39.5309566 | -- | Precision: 27.188 Accuracy: 5.5018890083 |
wireless network (DSL) | lat: 24.4506014 lng: 39.5307614 | -- | Precision: 57.392 Accuracy: 44.173707921 | |
Skyhook Precision Location | wireless network (STC_4G) | lat: 24.450692 lng: 39.530797 | nap: 10 source: ‘wifi’ | Precision: 34 Accuracy: 33.766395139 |
wireless network (DSL) | lat: 24.450674 lng: 39.530874 | nap: 23 source: ‘wifi’ | Precision: 31 Accuracy: 31.831818344 |
Color | Size Encoded Image | Size Polyglot Image | MSE | SSIM | PSNR |
---|---|---|---|---|---|
Grayscale with IP | 212 KB | 213 KB | 0.01099 | 0.99989 | 67.78051 |
Grayscale with W3C | 211 KB | 212KB | 0.00859 | 0.99992 | 68.77387 |
Color with IP | 12.2 KB | 13.0 KB | 0.05264 | 0.99967 | 60.76431 |
Color with W3C | 11.8 KB | 12.6 KB | 0.04148 | 0.99972 | 61.88862 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almehmadi, L.; Basuhail, A.; Alghazzawi, D.; Rabie, O. Framework for Malware Triggering Using Steganography. Appl. Sci. 2022, 12, 8176. https://doi.org/10.3390/app12168176
Almehmadi L, Basuhail A, Alghazzawi D, Rabie O. Framework for Malware Triggering Using Steganography. Applied Sciences. 2022; 12(16):8176. https://doi.org/10.3390/app12168176
Chicago/Turabian StyleAlmehmadi, Lamia, Abdullah Basuhail, Daniyal Alghazzawi, and Osama Rabie. 2022. "Framework for Malware Triggering Using Steganography" Applied Sciences 12, no. 16: 8176. https://doi.org/10.3390/app12168176
APA StyleAlmehmadi, L., Basuhail, A., Alghazzawi, D., & Rabie, O. (2022). Framework for Malware Triggering Using Steganography. Applied Sciences, 12(16), 8176. https://doi.org/10.3390/app12168176