Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks
Abstract
:1. Introduction
- Thermal conductivity (TC, λ), which refers to the material’s heat conduction property;
- Thermal diffusivity (TD, κ), which refers to the material’s heat diffusion property;
- Specific heat capacity (Cp), which links TC and TD using density (ρ), i.e., Equation (1):
- Predicting and/or in-time monitoring of the heat flux;
- Extracting the temperature profile;
- Evaluating the saturation content of the formation.
2. Establishment of Dataset
2.1. Input Parameters for Models
2.1.1. P-Wave Velocity
2.1.2. Porosity of Rocks
2.1.3. Density of Rocks
2.1.4. Uniaxial Compressive Strength
3. Gene Expression Programming (GEP)
4. Results
4.1. NLMR Model
4.2. GEP Model
4.3. Verification and Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2021, 38, 3321–3340. [Google Scholar] [CrossRef]
- Özkahraman, H.T.; Selver, R.; Isık, E.C. Determination of the thermal conductivity of rock from P-wave velocity. Int. J. Rock Mech. Min. Sci. 2004, 4, 703–708. [Google Scholar] [CrossRef]
- Singh, T.N.; Sinha, S.; Singh, V.K. Prediction of thermal conductivity of rock through physico-mechanical properties. Build. Environ. 2007, 42, 146–155. [Google Scholar] [CrossRef]
- Yaşar, E.; Erdoğan, Y.; Güneyli, H. Determination of the thermal conductivity from physico-mechanical properties. Bull. Eng. Geol. Environ. 2008, 67, 219–225. [Google Scholar] [CrossRef]
- Li, Z.-W.; Feng, X.-T.; Zhang, Y.-J.; Gong, Y.-H.; Zhu, G.-Q. Effect of mechanical damage on the thermal conductivity of granite. Geothermics 2020, 53, 1039–1051. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, A.; Samui, P.; Samaei, M.; Garousi, A. Numerical analysis of bearing capacity of circular footing reinforced with geogrid layers. Arab. J. Geosci. 2022, 15, 750. [Google Scholar] [CrossRef]
- ASTM-C1045-97; Practice for the Calculation of Thermal Transmission Properties from Steady State Heat Flux Measurements. ASTM International: West Conshohocken, PA, USA, 1990. [CrossRef]
- Pribnow, D.; Umsonst, T. Estimation of thermal conductivity from the mineral composition: Influence of fabric and anisotropy. Geophys. Res. Lett. 1993, 20, 2199–2202. [Google Scholar] [CrossRef]
- Hartmann, A.; Rath, V.; Clauser, C. Thermal conductivity from core and well log data. Int. J. Rock Mech. Min. Sci. 2005, 42, 1042–1055. [Google Scholar] [CrossRef]
- Fuchs, S.; Förster, A. Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Geochemistry 2010, 70 Suppl. 3, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, J.; Back, P.-E.; Ericsson, L.O.; Wrafter, J. Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. Int. J. Rock Mech. Min. Sci. 2009, 46, 1023–1028. [Google Scholar] [CrossRef]
- El Sayed, A.M.A.; El Sayed, N.A. Thermal conductivity calculation from P-wave velocity and porosity assessment for sandstone reservoir rocks. Geothermics 2019, 82, 91–96. [Google Scholar] [CrossRef]
- Pimienta, L.; Klitzsch, N.; Clauser, C. Comparison of thermal and elastic properties of sandstones: Experiments and theoretical insights. Geothermics 2018, 76, 60–73. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H.; Zhao, Z.; Guo, Z.; Cai, M.; Wang, J. Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2019, 115, 121–136. [Google Scholar] [CrossRef]
- Zimmerman, R.W. Thermal conductivity of fluid-saturated rocks. J. Pet. Sci. Eng. 1989, 3, 219–227. [Google Scholar] [CrossRef]
- Revil, A. Thermal conductivity of unconsolidated sediments with geophysical applications. J. Geophys. Res. 2000, 105, 16749–16768. [Google Scholar] [CrossRef]
- Jougnot, D.; Revil, A. Thermal conductivity of unsaturated clay-rocks. Hydrol. Earth Syst. Sci. 2010, 14, 91–98. [Google Scholar] [CrossRef]
- Côté, J.; Konrad, J.-M. Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. Int. J. Heat Mass Transf. 2009, 52, 796–804. [Google Scholar] [CrossRef]
- Li, Z.-W.; Long, M.-C.; Feng, X.-T.; Zhang, Y.-J. Thermal damage effect on the thermal conductivity inhomogeneity of granite. Int. J. Rock Mech. Min. Sci. 2021, 138, 104583. [Google Scholar] [CrossRef]
- Vosteen, H.D.; Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth 2003, 28, 499–509. [Google Scholar] [CrossRef]
- Urquhart, A.; Bauer, S. Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from −75 °C to 300 °C. Int. J. Rock Mech. Min. Sci. 2015, 78, 350–352. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Z.; Guo, Z.; Cai, M.; Li, X.; Li, P.; Chen, L.; Wang, J. Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mech. Rock Eng. 2018, 51, 2055–2074. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, C.; Zhang, B.; Tang, B.; Li, K.; Li, W.; Fu, X. Effect of Temperature on the Thermal Conductivity of Rocks and Its Implication for In Situ Correction. Geofluids 2021, 2021, 6630236. [Google Scholar] [CrossRef]
- Khandelwal, M. Prediction of thermal conductivity of rocks by soft computing. Int. J. Earth Sci. 2011, 100, 1383–1389. [Google Scholar] [CrossRef]
- Garitte, B.; Gens, A.; Vaunat, J.; Armand, G. Thermal conductivity of argillaceous rocks: Determination methodology using in situ heating tests. Rock Mech. Rock Eng. 2014, 47, 111–129. [Google Scholar] [CrossRef]
- Clauser, C. Thermal storage and transport properties of rocks, II: Thermal conductivity and diffusivity. In Encyclopedia of Solid Earth Geophysics; Springer: Dordrecht, Germany, 2011; pp. 1431–1448. [Google Scholar] [CrossRef]
- Popov, E.; Trofimov, A.; Goncharov, A.; Abaimov, S.; Chekhonin, E.; Popov, Y.; Sevostianov, I. Technique of rock thermal conductivity evaluation on core cuttings and non-consolidated rocks. Int. J. Rock Mech. Min. Sci. 2018, 108, 15–22. [Google Scholar] [CrossRef]
- Gu, Y.; Rühaak, W.; Bär, K.; Sass, I. Using seismic data to estimate the spatial distribution of rock thermal conductivity at reservoir scale. Geothermics 2017, 66, 61–72. [Google Scholar] [CrossRef]
- Griffiths, C.M.; Brereton, N.R.; Beausillon, R.; Castillo, D. Thermal conductivity prediction from petrophysical data: A case study. Geol. Soc. Lond. Spec. Publ. 1992, 65, 299–315. [Google Scholar] [CrossRef]
- Esteban, L.; Pimienta, L.; Sarout, J.; Delle Piane, C.; Haffen, S.; Geraud, Y.; Timms, N.E. Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics 2015, 53, 255–269. [Google Scholar] [CrossRef]
- Boulanouar, A.; Rahmouni, A.; Boukalouch, M.; Samaouali, A.; Géraud, Y.; Harnafi, M.; Sebbani, J. Determination of thermal conductivity and porosity of building stone from ultrasonic velocity measurements. Geomaterials 2013, 3, 138–144. [Google Scholar] [CrossRef]
- Ray, R.; Kumar, D.; Samui, P.; Roy, L.B.; Goh, A.T.C.; Zhang, W. Application of soft computing techniques for shallow foundation reliability in geotechnical engineering. Geosci. Front. 2021, 12, 375–383. [Google Scholar] [CrossRef]
- Sarir, P.; Armaghani, D.J.; Jiang, H.; Sabri, M.M.S.; He, B.; Ulrikh, D.V. Prediction of Bearing Capacity of the Square Concrete-Filled Steel Tube Columns: An Application of Metaheuristic-Based Neural Network Models. Materials 2022, 15, 3309. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, C. Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows. Agriculture 2022, 12, 793. [Google Scholar] [CrossRef]
- Chen, H.; Miao, F.; Chen, Y.; Xiong, Y.; Chen, T. A hyperspectral image classification method using multifeature vectors and optimized KELM. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2781–2795. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, H.; Gu, J.; Chen, H.; Deng, W. Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism. Eng. Appl. Artif. Intell. 2022, 114, 105139. [Google Scholar] [CrossRef]
- An, Z.; Wang, X.; Li, B.; Xiang, Z.; Zhang, B. Robust visual tracking for UAVs with dynamic feature weight selection. Appl. Intell. 2022, 1–14. [Google Scholar] [CrossRef]
- Dai, L.; Wu, X.; Zhou, M.; Ahmad, W.; Ali, M.; Sabri, M.M.S.; Salmi, A.; Ewais, D.Y.Z. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete. Materials 2022, 15, 4450. [Google Scholar] [CrossRef]
- Hajihassani, M.; Jahed Armaghani, D.; Kalatehjari, R. Applications of particle swarm optimization in geotechnical engineering: A comprehensive review. Geotech. Geol. Eng. 2018, 36, 705–722. [Google Scholar] [CrossRef]
- Zangoei, A.; Monjezi, M.; Armaghani, D.J.; Mehrdanesh, A.; Ahmadian, S. Prediction and optimization of flyrock and oversize boulder induced by mine blasting using artificial intelligence techniques. Environ. Earth Sci. 2022, 81, 359. [Google Scholar] [CrossRef]
- Huat, C.Y.; Moosavi, S.M.H.; Mohammed, A.S.; Armaghani, D.J.; Ulrikh, D.V.; Monjezi, M.; Hin Lai, S. Factors influencing pile friction bearing capacity: Proposing a novel procedure based on gradient boosted tree technique. Sustainability 2021, 13, 11862. [Google Scholar] [CrossRef]
- Assouline, D.; Mohajeri, N.; Gudmundsson, A.; Scartetzzini, J.-L. Combining fourier analysis and machine learning to estimate the shallow-ground thermal diffusivity in Switzerland. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1144–1147. [Google Scholar]
- Sargam, Y.; Wang, K.; Cho, I.H. Machine learning based prediction model for thermal conductivity of concrete. J. Build. Eng. 2021, 34, 101956. [Google Scholar] [CrossRef]
- Verma, A.; Jha, M.K.; Gautam, P.; Mishra, A.K.; Vardhan, H.; Singh, S.K. Prediction of thermal conductivity and damage in Indian Jalore granite for design of underground research laboratory. Neural Comput. Appl. 2021, 33, 13183–13192. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Yin, Y.; Rahardja, S.; Qu, Z. Temperature field prediction for various porous media considering variable boundary conditions using deep learning method. Int. Commun. Heat Mass Transf. 2022, 132, 105916. [Google Scholar] [CrossRef]
- He, J.; Li, K.; Wang, X.; Gao, N.; Mao, X.; Jia, L. A Machine Learning Methodology for Predicting Geothermal Heat Flow in the Bohai Bay Basin, China. Nat. Resour. Res. 2022, 31, 237–260. [Google Scholar] [CrossRef]
- Hajihassani, M.; Marto, A.; Khezri, N.; Kalatehjari, R. Indirect measure of thermal conductivity of rocks through adaptive neuro-fuzzy inference system and multivariate regression analysis. Meas. J. Int. Meas. Confed. 2015, 67, 71–77. [Google Scholar] [CrossRef]
- Kang, J.; Yu, Z.; Wu, S.; Zhang, Y.; Gao, P. Feasibility analysis of extreme learning machine for predicting thermal conductivity of rocks. Environ. Earth Sci. 2021, 80, 455. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Sabri, M.M.S.; Ulrikh, D.V.; Ahmad, M. The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength. Materials 2022, 15, 3019. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, M.; Sabri, M.M.S.; Yuan, H. A novel neural computing model applied to estimate the dynamic modulus (dm) of asphalt mixtures by the improved beetle antennae search. Sustainability 2022, 14, 5938. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.S.; Li, X. Prediction of the compressive strength for cement-based materials with metakaolin based on the hybrid machine learning method. Materials 2022, 15, 3500. [Google Scholar] [CrossRef]
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. arXiv Preprint 2001, arXiv:cs/0102027. [Google Scholar]
- Samaie, M.; Ranjbarnia, M.; Zare Naghadehi, M. Prediction of the Rock Brittleness Index Using Nonlinear Multivariable Regression and the CART Regression Tree. J. Civ. Environ. Eng. 2018, 48, 33–40. [Google Scholar]
- Yamaguchi, U. The number of test-pieces required to determine the strength of rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1970, 7, 209–227. [Google Scholar] [CrossRef]
- Gegenhuber, N.; Schoen, J. New approaches for the relationship between compressional wave velocity and thermal conductivity. J. Appl. Geophys. 2012, 76, 50–55. [Google Scholar] [CrossRef]
- Domenico, S.N. Rock lithology and porosity determination from shear and compressional wave velocity. Geophysics 1984, 49, 1188–1195. [Google Scholar] [CrossRef]
- Freund, D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophys. J. Int. 1992, 108, 125–135. [Google Scholar] [CrossRef]
- Clauser, C.; Huenges, E. Thermal conductivity of rocks and minerals. In Rock Physics & Phase Relations: A Handbook of Physical Constants; John Wiley & Sons, Inc.: New York, , NY, USA, 1995; Volume 3, pp. 105–126. [Google Scholar] [CrossRef]
- Birch, F. The velocity of compressional waves in rocks to 10 kilobars: 2. J. Geophys. Res. 1961, 66, 2199–2224. [Google Scholar] [CrossRef]
- Horai, K.i. Thermal conductivity of rock-forming minerals. J. Geophys. Res. 1971, 76, 1278–1308. [Google Scholar] [CrossRef]
- Pimienta, L.; Sarout, J.; Esteban, L.; Piane, C.D. Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophys. J. Int. 2014, 197, 860–874. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; Available online: https://books.google.com/books?hl=en&lr=&id=5EgGaBkwvWcC&oi=fnd&pg=PR7&dq=63.+Holland,+J.+Adaptation+in+naturna+and+artificial+systems:+An+introductory+analysis+with+application+to+biology.+Control+Artif.+Intell.+1975&ots=mJlk05IInw&sig=oarnmkRQ8ErijpQz8 (accessed on 29 August 2022).
- Chambers, L.D. The Practical Handbook of Genetic Algorithms: Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Bayat, P.; Monjezi, M.; Mehrdanesh, A.; Khandelwal, M. Blasting pattern optimization using gene expression programming and grasshopper optimization algorithm to minimise blast-induced ground vibrations. Eng. Comput. 2021, 38, 3341–3350. [Google Scholar] [CrossRef]
- Samaei, M.; Ranjbarnia, M.; Nourani, V.; Naghadehi, M.Z. Performance prediction of tunnel boring machine through developing high accuracy equations: A case study in adverse geological condition. Measurement 2019, 152, 107244. [Google Scholar] [CrossRef]
- MathWorks, I. MATLAB and Statistics Toolbox Release 2012b; The MathWorks, Inc.: Natick, MA, USA, 2012. [Google Scholar]
- Zare Naghadehi, M.; Samaei, M.; Ranjbarnia, M.; Nourani, V. State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming. Measurement 2018, 126, 46–57. [Google Scholar] [CrossRef]
- Rostami, A.; Masoudi, M.; Ghaderi-Ardakani, A.; Arabloo, M.; Amani, M. Effective thermal conductivity modeling of sandstones: SVM framework analysis. Int. J. Thermophys. 2016, 37, 59. [Google Scholar] [CrossRef]
- Khandelwal, M. Application of an expert system to predict thermal conductivity of rocks. Neural Comput. Appl. 2012, 21, 1341–1347. [Google Scholar] [CrossRef]
Variable | Max | Min | Mean | Median | St. Deviation |
---|---|---|---|---|---|
TC (W/m K) | 3.01 | 0.186 | 1.395 | 1.2628 | 0.762 |
UCS (MPa) | 116.9 | 3.43 | 61.32 | 63.258 | 24.151 |
P-wave (m/s) | 6300 | 1800 | 4486.436 | 4457.5105 | 1096.66 |
Density (kg/m3) | 2970 | 500 | 2508.30 | 2575.3305 | 422.851 |
Porosity (%) | 84 | 0.83 | 5.91 | 2.354 | 12.755 |
P-Wave | Porosity | Density | UCS | |
---|---|---|---|---|
Polynomial (1st order) | 0.8249 | −0.1717 | 0.3517 | 0.5463 |
Polynomial (2nd order) | 0.8597 | −0.2841 | 0.5058 | 0.5928 |
Power (one term) | 0.8587 | −0.5912 | 0.5113 | 0.5621 |
Power (two term) | 0.8602 | −0.614 | 0.5113 | 0.5942 |
P-Wave | Porosity | Density | UCS | |
---|---|---|---|---|
P-wave | 1 | −0.2441 | +0.3876 | +0.4911 |
Porosity | 1 | −0.8094 | −0.2578 | |
Density | 1 | +0.4295 | ||
UCS | 1 |
Model | Data Status | R2 | RMSE | ||
---|---|---|---|---|---|
Training | Testing | Training | Testing | ||
NLMR | 65% of all for training 35% of all for testing | 0.86 | 0.83 | 0.27 | 0.31 |
Parameter | Value |
---|---|
Number of chromosomes | 30 |
Head size | 8 |
Number of genes | 4 |
Linking function | Addition |
Fitness function | RMSE |
Mutation rate | 0.044 |
Inversion rate | 0.1 |
One-point recombination rate | 0.3 |
Two-point recombination rate | 0.3 |
Gene recombination rate | 0.1 |
Insertion sequences transposition rate | 0.1 |
Root insertion sequence transposition rate | 0.1 |
Gene transposition rate | 0.1 |
Function set |
Model | Data Status | R2 | RMSE | ||
---|---|---|---|---|---|
Training | Testing | Training | Testing | ||
GEP | 65% of all for training 35% of all for testing | 0.95 | 0.90 | 0.17 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samaei, M.; Massalow, T.; Abdolhosseinzadeh, A.; Yagiz, S.; Sabri, M.M.S. Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks. Appl. Sci. 2022, 12, 9187. https://doi.org/10.3390/app12189187
Samaei M, Massalow T, Abdolhosseinzadeh A, Yagiz S, Sabri MMS. Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks. Applied Sciences. 2022; 12(18):9187. https://doi.org/10.3390/app12189187
Chicago/Turabian StyleSamaei, Masoud, Timur Massalow, Ali Abdolhosseinzadeh, Saffet Yagiz, and Mohanad Muayad Sabri Sabri. 2022. "Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks" Applied Sciences 12, no. 18: 9187. https://doi.org/10.3390/app12189187
APA StyleSamaei, M., Massalow, T., Abdolhosseinzadeh, A., Yagiz, S., & Sabri, M. M. S. (2022). Application of Soft Computing Techniques for Predicting Thermal Conductivity of Rocks. Applied Sciences, 12(18), 9187. https://doi.org/10.3390/app12189187