Remediation of Heavy Metal Contaminated Farmland Soil by Biodegradable Chelating Agent GLDA
Abstract
:1. Introduction
2. Experimental
2.1. Materials
Soil Sample
2.2. Reagent
2.3. Experimental Procedures
2.4. Distribution of Toxic Metals in the Contaminated Soil before and after Chelant Extraction
2.5. Leaching of Soil with GLDA Solution of Different pH
2.6. Leaching of Soil with Different Leaching Times and Different Dosages of GLDA
2.7. Effects of Combinations of GLDA and Different Salt on the Removal of Heavy Metals in Soil
2.8. Leaching of Contaminated Soil by GLDA-4
2.9. Data Processing
3. Results and Discussion
3.1. Leaching Effects of GLDA and Citric Acid Solutions with Different pHs on Soil Heavy Metals
3.2. Influence of Leaching Time on the Leaching Effect of Heavy Metal Pb by GLDA-Na
3.3. Effects of GLDA-Na Solutions with Different Concentrations on the Removal of Heavy Metal Pb in Soil
3.4. The Effects of Combinations of GLDA-Na and Different Salts on the Removal of Heavy Metals in Soil
3.5. Soil Condition after Leaching with GLDA-4
4. Conclusions
- (1)
- The leaching efficiency of heavy metal Pb in soil was improved by adjusting the GLDA-Na solution to reach acidity with citric acid.
- (2)
- The leaching efficiency of Pb, achieved by mixing GLDA-Na and citric acid, was greater than the sum of their respective leaching abilities. To achieve the leaching efficiency of GLDA-Na without adjusting the pH, the leaching time and the dosage of the GLDA-Na solution, adjusted by citric acid at a pH of 4, were reduced.
- (3)
- After leaching with 10 mmol/L of GLDA-4 solution for 120 min, the total Pb and available Pb in the soil decreased significantly, with decreased amplitudes of more than 44% and more than 54%, respectively.
- (4)
- The leaching rate of Pb was improved by adding sodium hexametaphosphate into GLDA-Na, but the effect of 1 + 1 > 2 could not be achieved.
- (5)
- The combination of GLDA and critic acid is an environmentally friendly and effective chelating agent or washing solution for the remediation of heavy metal-contaminated soils. This mixture may be a useful, effective, and environmentally friendly chelator for the remediation of heavy metal-contaminated soil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Begum, Z.A.; Rahman, I.M.M.; Tate, Y.; Sawai, H.; Maki, T.; Hasegawa, H. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 2012, 87, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rinklebe, J.; Tack, F.M.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 37, 936–963. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Wu, Y.C.; Xu, Y.Y. Carbamazepine degration and genome sequencing of a novel exoelectrogen isolated from microbial fuel cells. Sci. Total Environ. 2022, 838, 156161. [Google Scholar] [CrossRef] [PubMed]
- Begum, Z.A.; Rahman, I.M.M.; Tate, Y.; Egawa, Y.; Maki, T.; Hasegawa, H. Formation and stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with biodegradable aminopolycarboxylate chelants (D-2-(2-carboxymethyl) nitrilotriacetic acid, GLDA, and 3-hydroxy-2,2′-iminodisuccinic acid, HIDS) in aqueous solutions. J. Solut. Chem. 2012, 41, 1713–1728. [Google Scholar]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Begum, Z.A.; Rahman, I.M.M.; Ishii, K.; Tsukada, H.; Hasegawa, H. Dynamics of Strontium and geochemically correlated elements in soil during washing remediation with eco-complaint chelators. J. Environ. Manag. 2020, 259, 110018. [Google Scholar] [CrossRef]
- Nowack, B.; Schulin, R.; Robinson, B.H. Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol. 2006, 40, 5225–5232. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, F.J.; Lombi, E.; McGrath, S.P. Leaching of heavy metals form contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111–120. [Google Scholar] [CrossRef]
- Begum, Z.A.; Rahman, I.M.M.; Hasegawa, H. Complexation behavior of SrII and geochemically-related elements (MgII, CaII, BaII, and YIII) with biodegradable aminopolycarboxylate chelators (GLDA and HIDS). J. Mol. Liq. 2017, 242, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Eklund, B.; Bruno, E.; Lithner, G.; Borg, H. Use of ethylenediaminetetraacetic acid in pulp mills and effects on metal mobility and primary production. Environ. Toxicol. Chem. 2002, 21, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Barona, A.; Aranguiz, I.; Elías, A. Metal associations in soils before and after EDTA extractive decontamination: Implications for the effectiveness of further clean-up procedures. Environ. Pollut. 2001, 113, 79–85. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Haensch, R.; Schnug, E. EDTA application on agricultural soils affects microelement uptake of plants. Sci. Total Environ. 2017, 577, 166–173. [Google Scholar] [CrossRef]
- Bergan, T.; Klaveness, J.; Aasen, A.J. Chelating agents. Chemotherapy 2001, 47, 10–14. [Google Scholar] [CrossRef]
- Chauhan, G.; Pant, K.K.; Nigam, K.D.P. Chelation technology: A promising green approach for resource management and waste minimization. Environ. Sci. Processes Impacts 2015, 17, 12–40. [Google Scholar] [CrossRef]
- Pinto, I.S.S.; Neto, I.F.F.; Soares, H.M.V.M. Biodegradable chelating agents for industrial, domestic, and agricultural applications-a review. Environ. Sci. Pollut. Res. Int. 2014, 21, 11893–11906. [Google Scholar] [CrossRef]
- Tandy, S.; Bossart, K.; Muelle, R.; Ritschel, J.; Hauser, L.; Schulin, R.; Nowack, B. Extraction of heavy metals from soils using biodegradable chelating agents. Environ. Sci. Technol. 2004, 38, 937–944. [Google Scholar] [CrossRef]
- Kos, B.; Lestan, D. Induced Phytoextraction/Soil Washing of Lead Using Biodegradable Chelate and Permeable Barriers . Environ. Sci. Technol. 2003, 37, 624–629. [Google Scholar] [CrossRef]
- Hasegawa, H.; Mamun, M.A.A.; Tsukagoshi, Y.; Ishii, K.; Sawai, H.; Begum, Z.A.; Asami, M.S.; Maki, T.; Rahman, I.M.M. Chelator-assisted washing for the extraction of lead, copper, and zinc from contaminated soils: A remediation approach. Appl. Geochem. 2019, 109, 104397. [Google Scholar] [CrossRef]
- Ebina, Y.; Okada, S.; Hamazaki, S.; Ogino, F.; Li, J.L.; Midorikawa, O. Nephrotoxicity and renal cell carcinoma after use of iron- and aluminum nitrilotriacetate complexes in rats. J. Natl. Cancer Inst. 1986, 76, 107–113. [Google Scholar]
- Borowiec, M.; Huculak, M.; Hoffmann, K.; Hoffmann, J. Biodegradation of selected substances used in liquid fertilizers as an element of life cycle assessment. Pol. J. Chem. Technol. 2009, 11, 1–3. [Google Scholar] [CrossRef]
- Bretti, C.; Majlesi, K.; Stefano, C.D.; Sammartano, S. Thermodynamic Study on the Protonation and Complexation of GLDA with Ca2+ and Mg2+ at Different Ionic Strengths and Ionic Media at 298.15 K. J. Chem. Eng. Data 2016, 61, 1895–1903. [Google Scholar] [CrossRef]
- Hauthal, H. Sustainable detergents and cleaners, progress on ingredients, nanoparticles, analysis, environment. Tenside Surfact. Det 2009, 46, 53–62. [Google Scholar] [CrossRef]
- Seetz, J.; Stanitzek, T. GLDA: The new green chelating agent for detergents and cosmetics. SEPAWA Congr. Eur. Deterg. Conf. Proc. 2008, 1, 17e22. [Google Scholar]
- Guo, J.; Yuan, C.; Zhao, Z.; He, Q.; Zhou, H.; Wen, M. Soil washing by biodegradable GLDA and PASP: Effects on metals removal efficiency, distribution, leachability, bioaccessibility, environmental risk and soil properties. Process Saf. Environ. Prot. 2022, 158, 172–180. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, Y.; Li, Q.; Sun, J. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J. Hazard. Mater. 2015, 283, 748–754. [Google Scholar] [CrossRef]
- Kołodynska, D. The chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In Expanding Issues in Desalination; InTech Publishers: Rijecka, Croatia, 2011; pp. 339–371. [Google Scholar]
- Wang, K.; Liu, Y.; Song, Z.; Haider, K.Z.; Qiu, W. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicol. Environ. Saf. 2019, 182, 10939. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, G.; Wei, Z.; Zhang, L.; He, Q.; Wu, Q.; Qian, T. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soil. J. Soils Sediments 2018, 18, 835–844. [Google Scholar] [CrossRef]
- Nobel, A. Dissolvine GL Technichal Brochure; AkzoNobel: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Association Oficial of Analytical Chemists (AOAC International). Guidelines for Standard Method Performance Requirements (Appendix F). In AOAC Official Methods Analysis; AOAC International: Rockville, MD, USA, 2012; pp. 1–17. [Google Scholar]
- National Association of Testing Authorities (NATA). Guidelines for the Validation and Verifification of Quantitative and Qualitative Test Methods; National Association of Testing Authorities: Rhodes, NSW, Australia, 2013; pp. 1–32. [Google Scholar]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certifification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Abollino, O.; Giacomino, A.; Malandrino, M.; Mentasti, E.; Aceto, M.; Barberis, R. Assessment of metal availability in a contaminated soil by sequential extraction. Water. Air. Soil. Poll. 2006, 173, 315–338. [Google Scholar] [CrossRef]
- Lim, T.T.; Tay, J.H.; Wang, J.Y. Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J. Environ. Eng. 2004, 130, 59–66. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Rolle, E. The effect of operating variables on chelant assisted remediation of contaminated dredged sediment. Chemosphere 2007, 66, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ong, S.K. Recycling of lead-contaminated EDTA wastewater. J. Hazard. Mater. 1999, 69, 273–286. [Google Scholar] [CrossRef]
- Rahman, I.M.M.; Begum, Z.A.; Sawai, H.; Ogino, M.; Furusho, Y.; Mizutani, S.; Hasegawa, H. Chelant-assisted depollution of metalcontaminated Fe-coated sands and subsequent recovery of the chemicals using solid-phase extraction systems. Water Air Soil Poll. 2015, 226, 1–12. [Google Scholar] [CrossRef]
pH | CEC | OM | Fe | Pb (S = 406.9) | Cd | Cu | Zn | |
---|---|---|---|---|---|---|---|---|
cmol/kg | g/kg | µg/g | µg/g | µg/g | µg/g | µg/g | ||
Dabaoshan SB | 5.04 | 8.87 | 13.26 | 50855.02 | 287.26 | 0.58 | 210.02 | 249.83 |
Huaqiao HQ | 5.01 | 10.07 | 41.06 | 12364.12 | 42.87 | 0.71 | 25.53 | 71.41 |
Tielong TL | 6.01 | 8.54 | 30.32 | 18826.91 | 146.08 | 3.30 | 27.49 | 198.72 |
Liantang LT | 7.17 | 13.63 | 29.63 | 38993.00 | 947.63 | 1.87 | 43.56 | 954.50 |
Dispose | Concentration |
---|---|
GLDA | 5 mmol/L |
Sodium hexametaphosphate | 0.1 mol/L |
G-Sodium hexametaphosphate | 10 mmol/L GLDA-Na was mixed with 0.2 mol/L sodium hexametaphosphate in equal volume |
Sodium citrate | 0.1 mol/L |
G-Sodium citrate | 10 mmol/L GLDA-Na was mixed with 0.2 mol/L sodium citrate in equal volume |
Potassium chloride | 0.1 mol/L |
G-Potassium chloride | 10 mmol/L GLDA-Na was mixed with 0.2 mol/L potassium chloride |
Leacheates | SB | HQ | TL | LT |
---|---|---|---|---|
GLDA-4 | 38.74 ab | 51.65 a | 56.70 a | 48.45 a |
GLDA-5 | 39.91 a | 49.68 a | 48.29 b | 40.06 b |
GLDA-6 | 37.79 b | 46.84 b | 45.20 c | 33.12 c |
GLDA-7 | 38.93 ab | 42.48 c | 42.78 d | 27.71 d |
GLDA-10 | 35.73 c | 43.46 c | 38.89 e | 21.67 e |
GLDA | 23.98 d | 33.65 d | 30.09 f | 11.40 f |
CA-4 | 6.96 e | 7.65 e | 5.76 g | 8.13 g |
CA-5 | 4.47 f | 4.80 f | 3.44 h | 4.60 h |
CA-6 | 2.07 g | 2.11 g | 1.81 hi | 0.48 i |
CA-7 | 1.95 g | 2.10 g | 1.65 hi | 0.54 i |
CA-10 | 0.11 h | 4.40 g | 0.70 i | 0.02 i |
GLDA-Na | Sodium Hexametaphosphate | G-Sodium Hexametaphosphate | Sodium Citrate | G-Sodium Citrate | Potassium Chloride | G-Potassium Chloride | |
---|---|---|---|---|---|---|---|
Dabaoshan | 23.98 | 29.61 | 30.83 | 3.73 | 15.73 | 1.98 | 20.53 |
Huaqiao | 33.65 | 40.39 | 44.58 | 10.47 | 28.67 | 2.63 | 34.54 |
Tielong | 30.09 | 39.49 | 41.11 | 4.53 | 22.13 | 0.00 | 26.96 |
Lechang | 11.40 | 34.09 | 35.70 | 0.71 | 6.70 | 0.00 | 6.81 |
Full Amount (mg/kg) | Available Content (mg/kg) | pH | |||
---|---|---|---|---|---|
Before leaching | |||||
SB | 287.3 ± 6.5 | 45.53 ± 4.34 | 5.04 | ||
TL | 146.1 ± 17.6 | 42.877 ± 8.765 | 6.01 | ||
LT | 947.6 ± 25.9 | 242.4 ± 10.4 | 7.17 | ||
After leaching | Reduction rate | Reduction rate | |||
SB | 160.9 ± 8.4 | 43.97% | 20.60 ± 0.75 | 54.73% | 5.00 |
TL | 36.7 ± 11.5 | 74.92% | 15.11 ± 2.35 | 64.67% | 6.02 |
LT | 509.5 ± 11.3 | 46.23% | 72.97 ± 6.29 | 69.89% | 6.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Chen, Y.; Li, X.; Rong, H.; Huang, Z. Remediation of Heavy Metal Contaminated Farmland Soil by Biodegradable Chelating Agent GLDA. Appl. Sci. 2022, 12, 9277. https://doi.org/10.3390/app12189277
Wei Z, Chen Y, Li X, Rong H, Huang Z. Remediation of Heavy Metal Contaminated Farmland Soil by Biodegradable Chelating Agent GLDA. Applied Sciences. 2022; 12(18):9277. https://doi.org/10.3390/app12189277
Chicago/Turabian StyleWei, Zebin, Yihui Chen, Xiaoqing Li, Haiyu Rong, and Zhujian Huang. 2022. "Remediation of Heavy Metal Contaminated Farmland Soil by Biodegradable Chelating Agent GLDA" Applied Sciences 12, no. 18: 9277. https://doi.org/10.3390/app12189277
APA StyleWei, Z., Chen, Y., Li, X., Rong, H., & Huang, Z. (2022). Remediation of Heavy Metal Contaminated Farmland Soil by Biodegradable Chelating Agent GLDA. Applied Sciences, 12(18), 9277. https://doi.org/10.3390/app12189277