Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health
Abstract
:1. Introduction
- RQ1: Can we reuse the domain expertise, and what are the shortcomings of past ontology-based emotion IoT projects?
- RQ2: What are the sensors used in the emotion domain? Are there standardized sensor emotion dictionaries? Is there emotion ontology supported by standards?
- RQ3: What are the AI technologies (e.g., rule-based inference engine) to deduce meaningful information from emotion sensor data so developers can design faster IoT-based emotion services?
- RQ4: How to prove the veracity of the reasoning engine?
- C1: Ontology-based emotion projects shared though the LOV4IoT-Emotion ontology catalog tool (Table 1); it addresses RQ1 in Section 3.3.
- C2: The emotion sensor dictionary is aligned with the ETSI SmartM2M SAREF for eHealth Aging Well (SAREFEHAW) standard ontology; it addresses RQ2 in Section 4.2.
- C3: Retrieval of emotional knowledge by the reasoner, used in emotion scenarios; it addresses RQ4 in Section 4.
- C4: Provenance that keeps track of the knowledge designed by domain experts which is explicitly encoded in the ontology catalog and rule datasets to prove the veracity of the reasoning engine; it addresses RQ4 in Section 3.6.
- C5: Standardization-compliancy: Lessons learned from semantic interoperability are disseminated within the ISO/IEC 21823-3 IoT semantic interoperability [16], and the Alliance for the Internet of Things Innovation (AIOTI) Standardization WG (https://aioti.eu/aioti-wg03-reports-on-iot-standards/, accessed on 17 September 2022), which includes the Semantic Interoperability Expert Group [17,18] where the rule-based inference engine is taken as a baseline [19]. SAREF designers are also members of AIOTI Standard WG. AIOTI has other subgroups such as as AIOTI Health WG and AIOTI Urban Living WG. Furthermore, to implement the emotional knowledge graph, we employ semantic web technologies (RDF, RDFS, OWL, SPARQL), which are W3C standards.
2. Related Work: Ontology and IoT-Based Emotion Aware Recommender Systems
2.1. Existing Surveys on Ontology-Based Emotion Aware Projects
2.2. Selected Ontology-Based Emotion Aware Projects Due to Ontology Availability
2.3. Well-Being Recommendation Systems
2.4. Limitations of the Ontology and IoT-Based Emotion Aware Literature Study
- Recommender systems use contextual information but do not exploit the emotions of the users. Recommender systems for enhancing people’s emotion and mental health are still lacking.
- There are emotion-aware recommendation systems for music but not for mental health nor using IoT (Abdul et al. [53]).
- There is no emotion knowledge graph considering neurotransmitters, hormones and relationships to physiological data (e.g., heart rate).
- There is no standard emotion ontology.
- Reviewing the state of the art is a time-consuming task. There is a need to share the literature analysis innovatively (e.g., an emotion knowledge repository supported by tools) to ease the work of other researchers. The ontology-based emotion projects are classified in Table 1.
- Few ontologies can be semi-automatically analyzed, since numerous ontologies are not accessible online. There is a need to disseminate ontology best practices such as FAIR principles [14] for better ontology analysis to semi-automatically extract emotional-based domain knowledge.
- There is a lack of research tools shared as open-source (e.g., web service, web application) that can be easily reused to analyze the strengths and weaknesses of the applications illustrating the research use cases.
- NLP techniques are applied on texts for sentiment analysis (e.g., Twitter, comments on blogs, etc.) rather than emotion ontologies or scientific publications describing ontologies.
- Explicit descriptions of food that boost emotion are missing within ontology-based emotion-aware systems.
- There is no naturopathy recommender system to boost emotion and mental health.
3. Interconnecting Interdisciplinary Emotional Knowledge
3.1. Interconnecting Interdisciplinary Emotional Knowledge
- Affective Computing (Picard et al. [54] with a focus on emotion recognition by robots and wearable computers).
- Artificial Intelligence with a focus on Knowledge Engineering (e.g., emotion ontologies) (Ontology Catalog for Emotion in Section 3.3).
- Biology
- Psychology:
- –
- Brain, Chemistry and Psychology relationships (Virol et al. [65]).
- –
- –
- Understanding human emotions from facial expressions (Ekman et al. [68]).
- –
- Cognitive Psychology (Lieury et al. [69]).
- –
- Psychophysiology (Morange-Majoux et al. [70]).
- –
- Neuropsychology (Roger Gil et al. [71]—chapter on neuropsychology of emotions).
- –
- –
- Emotion Regulation (Mikolajczak et al. [78]).
- –
3.2. Competency Questions
- CQ: What are the basic emotions according to Eckman et al. [81]?
- CQ: What are the neurotransmitters relevant for emotions?
- CQ: What are the hormones relevant for emotions?
- CQ: What are the hormones related to stress?
- CQ: What are the hormones related to happiness?
- CQ: What are the physiological parameters/sensors relevant to deduce (basic) emotions?
- CQ: How to deduce meaningful information such as (basic) emotions from physiological data produced by sensors?
- CQ: What are the ontologies describing emotions?
3.3. Ontology-Based IoT Project Catalog for Emotion: LOV4IoT-Emotion
3.4. Knowledge Extraction from Emotion Ontologies
3.5. Mapping to Existing Knowledge Bases Such as SNOMED-CT, FMA, RXNORM, MedDRA, LOINC, MESH, GALEN, ChEBI, DBpedia, and Emotion Ontologies
3.5.1. Mapping to SNOMED-CT
3.5.2. Mapping Foundational Model of Anatomy (FMA)
3.5.3. Mapping to RXNORM
3.5.4. Mapping to MedDRA
3.5.5. Mapping to Logical Observation Identifier Names and Codes (LOINC)
3.5.6. Mapping to Medical Subject Headings (MESH)
3.5.7. Mapping to GALEN
3.5.8. Mapping to Chemical Entities of Biological Interest Ontology (ChEBI)
3.5.9. Mapping to DBpedia
3.5.10. Mapping to Emotion Ontologies
- Emotion Ontology (EmOCA) for Context Awareness (Berthelon et al. [28] (http://ns.inria.fr/emoca/emoca.rdfs, accessed on 17 September 2022)) since it references six basic emotions: joy, fear, disgust, anger, sadness, surprise, and other concepts such as valence and arousal.
- Emotion Ontology (EMO) and mental health and disease ontologies (MFOEM) (Hasting et al. [22]) (https://raw.githubusercontent.com/jannahastings/emotion-ontology/master/ontology/MFOEM.owl, accessed on 17 September 2022).
- Visualized Emotion Ontology (VEO) (Lin et al. [24,25]) (https://bioportal.bioontology.org/ontologies/VEO accessed on 17 September 2022) for concepts such as Emotion, Fear, Surprise, Anger, Disgust, Pride, Interest, Pleased, Joy, Hope, Admiration, Disappointment, Distress, Hate, Shame, etc.
- Onyx Ontology (Lopez, Sanchez-Rada et al. [27,30]) (http://www.gsi.dit.upm.es/ontologies/onyx/1.5/ns accessed on 17 September 2022) for concepts such as Emotion, Appraisal, etc.
- Emotion and Cognition ontology (Gil et al. [26] (http://rhizomik.net/ontologies/2010/11/emotionsonto.owl accessed on 17 September 2022) for concepts such as Emotion, etc. We did not find a taxonomy of emotion in this ontology.
3.6. Keeping Track of Provenance Metadata
3.7. FAIR Principles
3.8. Lessons Learnt from Automatic Extraction or Mapping
- Dead ontology URL. The ontology URL was mentioned in the scientific paper but is not available anymore. For this reason, it is important to encourage better FAIR principles (e.g., findable resources).
- The ontology cannot be loaded. Errors such as Unable to complete the HTTP request are encountered. There are also issues when dealing with ontology code generated with various ontology editors, libraries, etc. in various formats such as RDF/XML, RDF/Turtle.
- The ontology can be loaded but no terms for automatic extraction can be found. It can happen when there are no label or comments within the ontology or when the ontology URL was automatically built (e.g., MEDDRA;10033329).
- To map the ontologies, we have to deal with synonyms as well.
- Picking the right ontology fitting our need is challenging; numerous ontologies can cover the same terms, but all terms that we need are not covered in only one ontology.
4. Emotional Recommender System: Knowledge Discovery and Reasoning for Emotion
4.1. Implementation: Emotional Knowledge Graph and Prototypes Answering Competency Questions
- CQ: What are the physiological parameters/sensors relevant to deduce (basic) emotions? (Figure A8 and see Section 4.2)
- CQ: What are the reasoning mechanisms to analyze data from physiological parameters/sensors to deduce (basic) emotions? (Figure A7 and Section 4.3)
4.2. Semantic Sensor Emotion Dictionary
4.3. Knowledge Discovery and Reasoning for Emotion with Sensor-Based Linked Open Reasoning (S-LOR Emotion)
4.4. Emotional Use Cases
4.4.1. Emotional Robots to Reduce Social Isolation for Ageing People: ACCRA H2020 European Project in Collaboration with Japan
4.4.2. AIOTI for Health and Urban Living
4.4.3. AI4EU H2020 European Project-Knowledge Extraction for the Web of Things (KE4WoT) Challenge
4.4.4. Other Emotional Use Cases
- IAMHAPPY: an IoT knowledge-based well-being recommendation system to encourage happiness [55].
- Naturopathy Recommender System extended for Emotion: We extended our naturopathy knowledge graph to cover better emotion-related knowledge and to enhance mental health, for instance:
- –
- Food that contains magnesium is recommended for depression (e.g., chocolate) (Figure A10).
- –
- Food that contains Vitamin D is recommended for depression (Figure A11).
- Heartbeat data to deduce fear emotion (Figure A12).
- Skin conductance data to deduce anxiety emotion (Figure A13).
- Luminosity data to deduce weather (cloud cover) (Figure A14).
5. Evaluation: Applying Semantic Web Best Practices to Enhance the Emotional Knowledge Graph
5.1. Syntactic Ontology Evaluation
5.2. Ontology Design Evaluation
- One critical pitfall: P31 Defining wrong equivalent classes.
- Four important pitfalls: P10 Missing disjointness, P34 Untyped class, P38 No owl ontology declaration, and P30 Equivalent classes not explicitly declared.
- Six minor pitfalls: P04 Creating unconnected ontology elements, P08 Missing annotation, P20 Missing ontology annotations, P22 Using different naming conventions in the ontology, P32 Several classes with the same label, P36 URI contains file extension.
5.3. LOV4IoT-Emotion Ontology Catalog: Page View Statistics
5.4. Emotional Knowledge Graph Evaluated with Emotion Scenarios
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
AI | Artificial Intelligence |
ACCRA | Agile Co-Creation of Robots for Ageing |
AIOTI | Alliance for the Internet of Things Innovation |
BioPortal | Biomedical ontology catalog |
CHEBI | Chemical Entities of Biological Interest Ontology |
DBpedia | Semantic Wikipedia |
FMA | Foundational Model of Anatomy |
IoT | Internet of Things |
KE4WoT | Knowledge Extraction for the Web of Things |
KG | Knowledge Graph |
FMA | Foundational Model of Anatomy |
GALEN | Generalized Architecture for Languages, Encyclopedias, and Nomenclatures in medicine |
LOINC | Logical Observation Identifier Names and Codes |
LOV4IoT-Emotion | Linked Open Vocabularies for Internet of Things for Emotion |
MedDRA | Medical Dictionary for Regulatory Activities |
MESH | Medical Subject Headings |
NLP | Natural Language Processing |
RS | Recommender System |
SNOMED-CT | Systematized Nomenclature of Medicine for Clinical Terms |
Appendix A. Implementation: Complementary Demos
References
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J.-Hum.-Comput. Stud. 1995, 43, 907–928. [Google Scholar] [CrossRef]
- Noy, N.F.; McGuinness, D.L. Ontology Development 101: A Guide to Creating YOUR First Ontology. 2001. Available online: https://www.researchgate.net/publication/243772462_Ontology_Development_101_A_Guide_to_Creating_Your_First_Ontology/link/00b495322175126bd7000000/download (accessed on 17 September 2022).
- Suarez-Figueroa, M.C.; Gomez-Perez, A.; Fernandez-Lopez, M. The NeOn Methodology for Ontology Engineering. In Ontology Engineering in a Networked World; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2017, 8, 489–508. [Google Scholar] [CrossRef]
- Bonatti, P.A.; Decker, S.; Polleres, A.; Presutti, V. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371); Dagstuhl Reports; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2019. [Google Scholar]
- Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G. Recommender Systems: An Introduction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Aggarwal, C.C. Recommender Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Portugal, I.; Alencar, P.; Cowan, D. The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review. Expert Syst. Appl. 2018, 97, 205–227. [Google Scholar] [CrossRef]
- Lu, J.; Wu, D.; Mao, M.; Wang, W.; Zhang, G. Recommender System Application Developments: A Survey. Decis. Support Syst. 2015, 74, 12–32. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender Systems Survey. Knowl.-Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Adomavicius, G.; Tuzhilin, A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Nouh, R.M.; Lee, H.H.; Lee, W.J.; Lee, J.D. A Smart Recommender Based on Hybrid Learning Methods for Personal Well-Being Services. Sensors 2019, 19, 431. [Google Scholar] [CrossRef]
- Garcia-Ceja, E.; Riegler, M.; Nordgreen, T.; Jakobsen, P.; Oedegaard, K.J.; Tørresena, J. Mental Health Monitoring with Multimodal Sensing and Machine Learning: A survey. Pervasive Mob. Comput. 2018, 51, 1–26. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific DataManagement and Stewardship. Nat. Sci. Data J. 2016, 3, 60018. [Google Scholar]
- Poveda-Villalón, M.; Espinoza-Arias, P.; Garijo, D.; Corcho, O. Coming to Terms with FAIR Ontologies. In Proceedings of the International Conference on Knowledge Engineering and Knowledge Management, Bolzano, Italy, 16–20 September 2020. [Google Scholar]
- ISO/IEC 21823; Semantic Interoperability: Interoperability for Internet of Things Systems Part 3 Semantic Interoperability. ISO: Geneva, Switzerland, 2020.
- Bauer, M.; Baqa, H.; Bilbao, S.; Corchero, A.; Daniele, L.; Esnaola, I.; Fernandez, I.; Franberg, O.; Garcia-Castro, R.; Girod-Genet, M.; et al. Semantic IoT Solutions-A Developer Perspective (Semantic Interoperability White Paper Part I). 2019. Available online: https://www.researchgate.net/publication/336679022 (accessed on 17 September 2022).
- Bauer, M.; Baqa, H.; Bilbao, S.; Corchero, A.; Daniele, L.; Esnaola, I.; Fernandez, I.; Franberg, O.; Garcia-Castro, R.; Girod-Genet, M.; et al. Towards Semantic Interoperability Standards Based on Ontologies (Semantic Interoperability White Paper Part II). 2019. Available online: https://www.researchgate.net/publication/336677616 (accessed on 17 September 2022).
- Murdock, P.; Bassbouss, L.; Bauer, M.; Alaya, M.B.; Bhowmik, R.; Brett, P.; Chakraborty, R.N.; Dadas, M.; Davies, J.; Diab, W.; et al. Semantic Interoperability for the Web of Things (White Paper). 2016. Available online: https://www.researchgate.net/publication/307122744 (accessed on 17 September 2022).
- Noy, N.F.; Shah, N.H.; Whetzel, P.L.; Dai, B.; Dorf, M.; Griffith, N.; Jonquet, C.; Rubin, D.L.; Storey, M.A.; Chute, C.G.; et al. BioPortal: Ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 2009, 37 (Suppl. 2), W170–W173. [Google Scholar] [CrossRef]
- Vandenbussche, P.Y.; Atemezing, G.A.; Poveda-Villalón, M.; Vatant, B. Linked Open Vocabularies (LOV): A Gateway to Reusable Semantic Vocabularies on the Web. Semant. Web J. 2016, 8, 437–452. [Google Scholar] [CrossRef] [Green Version]
- Hastings, J.; Ceusters, W.; Smith, B.; Mulligan, K. The emotion ontology: Enabling interdisciplinary research in the affective sciences. In Proceedings of the Modeling and Using Context: 7th International and Interdisciplinary Conference, CONTEXT 2011, Karlsruhe, Germany, 26–30 September 2011. [Google Scholar]
- Larsen, R.R.; Hastings, J. From affective science to psychiatric disorder: Ontology as a semantic bridge. Front. Psychiatry 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Amith, M.; Liang, C.; Duan, R.; Chen, Y.; Tao, C. Visualized Emotion Ontology: A Model for Representing Visual Cues of Emotions. BMC Med. Inform. Decis. Mak. 2018, 18, 101–113. [Google Scholar] [CrossRef]
- Lin, R.; Amith, M.T.; Liang, C.; Tao, C. Designing an Ontology for Emotion-Driven Visual Representations. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 13–16 November 2017. [Google Scholar]
- Gil, R.; Virgili-Gomá, J.; García, R.; Mason, C. Emotions Ontology for Collaborative Modelling and Learning of Emotional Responses. Comput. Hum. Behav. 2015, 51, 610–617. [Google Scholar] [CrossRef]
- López, J.M.; Gil, R.; García, R.; Cearreta, I.; Garay, N. Towards an Ontology for Describing Emotions. In Proceedings of the First World Summit on the Knowledge Society, WSKS 2008, Athens, Greece, 24–26 September 2008. [Google Scholar]
- Berthelon, F.; Sander, P. Emotion Ontology for Context Awareness. In Proceedings of the 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 2–5 December 2013. [Google Scholar]
- Berthelon, F. Modélisation et Détection des émotions à Partir de Données Expressives et Contextuelles. Ph.D. Thesis, Université Nice Sophia Antipolis, Nice, France, 2013. [Google Scholar]
- Sánchez-Rada, J.F.; Iglesias, C.A. Onyx: A Linked Data approach to Emotion Representation. Inf. Process. Manag. 2016, 52, 99–114. [Google Scholar] [CrossRef]
- Abaalkhail, R.; Guthier, B.; Alharthi, R.; El Saddik, A. Survey on Ontologies for Affective States and Their Influences. Semant. Web 2018, 9, 441–458. [Google Scholar] [CrossRef]
- Tabassum, H.; Ahmed, S. Emotion: An Ontology for Emotion Analysis. In Proceedings of the Conference on Emerging Trends and Innovations in Computing and Technology, Karachi, Pakistan, 15–16 December 2016. [Google Scholar]
- Chen, J.; Hu, B.; Moore, P.; Zhang, X.; Ma, X. Electroencephalogram-based emotion assessment system using ontology and data mining techniques. Appl. Soft Comput. 2015, 30, 663–674. [Google Scholar] [CrossRef]
- Arguedas, M.; Xhafa, F.; Daradoumis, T.; Caballe, S. An Ontology about Emotion Awareness and affective Feedback in Elearning. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems (INCOS), Taipei, Taiwan, 2–4 September 2015. [Google Scholar]
- Tapia, S.A.A.; Gomez, A.H.F.; Corbacho, J.B.; Ratte, S.; Torres-Diaz, J.; Torres-Carrion, P.V.; Garcia, J.M. A Contribution to the Method of Automatic Identification of Human Emotions by using Semantic Structures. In Proceedings of the Conference on Interactive Collaborative Learning, Dubai, United Arab Emirates, 3–6 December 2014. [Google Scholar]
- Sykora, M.D.; Jackson, T.W.; O’Brien, A.; Elayan, S. Emotive Ontology: Extracting Fine-Grained Emotions from Terse, Informal Messages. IADIS Int. J. Comput. Sci. Inf. Syst. 2013, 8, 106–118. [Google Scholar]
- Ptaszynski, M.; Rzepka, R.; Araki, K.; Momouchi, Y. A Robust Ontology of Emotion Objects. In Proceedings of the Annual Meeting of The Association for Natural Language Processing (NLP-2012), Kanazawa, Japan, 22–24 October 2012. [Google Scholar]
- Baldoni, M.; Baroglio, C.; Patti, V.; Rena, P. From Tags to Emotions: Ontology-driven Sentiment Analysis in the Social Semantic Web. Intell. Artif. 2012, 6, 41–54. [Google Scholar] [CrossRef]
- Honold, F.; Schüssel, F.; Panayotova, K.; Weber, M. The Nonverbal Toolkit: Towards a Framework for Automatic Integration of Nonverbal Communication into Virtual Environments. In Proceedings of the Conference on Intelligent Environments, Guanajuato, Mexico, 26–29 June 2012. [Google Scholar]
- Eyharabide, V.; Amandi, A.; Courgeon, M.; Clavel, C.; Zakaria, C.; Martin, J.C. An Ontology for Predicting Students’ Emotions During a Quiz. Comparison with Self-Reported Emotions. In Proceedings of the Workshop on Affective Computational Intelligence (WACI), Paris, France, 14 April 2011. [Google Scholar]
- Francisco, V.; Gervás, P.; Peinado, F. Ontological Reasoning to Configure Emotional Voice Synthesis. In Proceedings of the Conference on Web Reasoning and Rule Systems, Innsbruck, Austria, 7–8 June 2007. [Google Scholar]
- Grassi, M. Developing HEO Human Emotions Ontology. In Proceedings of the European Workshop on Biometrics and Identity Management, Madrid, Spain, 16–18 September 2009. [Google Scholar]
- Radulovic, F.; Milikic, N. Smiley Ontology. In Proceedings of the International Workshop On Social Networks Interoperability, Shanghai, China, 7–9 December 2009. [Google Scholar]
- Yan, J.; Bracewell, D.B.; Ren, F.; Kuroiwa, S. The Creation of a Chinese Emotion Ontology Based on HowNet. Eng. Lett. 2008, 16, EL_16_1_24. [Google Scholar]
- Benta, K.I.; Rarău, A.; Cremene, M. Ontology Based Affective Context Representation. In Proceedings of the Conference on Telematics and Information Systems, Faro, Portugal, 14–17 May 2007. [Google Scholar]
- Rojas, A.; Vexo, F.; Thalmann, D.; Raouzaiou, A.; Karpouzis, K.; Kollias, S. Emotional Body Expression Parameters In Virtual Human Ontology. In Proceedings of the 1st International Workshop on Shapes and Semantics, Athens, Greece, 6–8 December 2006. [Google Scholar]
- Obrenovic, Z.; Garay, N.; López, J.M.; Fajardo, I.; Cearreta, I. An Ontology for Description of Emotional Cues. In Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII, B-Rank Conference), Beijing, China, 22–24 October 2005. [Google Scholar]
- Hastings, J.; Smith, B.; Ceusters, W.; Jensen, M.; Mulligan, K. Representing Mental Functioning: Ontologies for Mental Health and Disease. In Proceedings of the International Conference on Biomedical Ontology (ICBO), Graz, Austria, 21–25 July 2012. [Google Scholar]
- Gyrard, A.; Tabeau, K.; Fiorini, L.; Kung, A.; Senges, E.; De Mul, M.; Giuliani, F.; Lefebvre, D.; Hoshino, H.; Fabbricotti, I.; et al. Knowledge Engineering Framework for IoT Robotics Applied to Smart Healthcare and Emotional Well-Being. Int. J. Soc. Robot. 2021, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Ali, S.I.; Ali, R.; Hussain, M.; Ali, T.; Khan, W.A.; Amin, B.A.; Kang, B.H.; Lee, S. Personalization of Wellness Recommendations using Contextual Interpretation. Expert Syst. Appl. 2018, 96, 506–521. [Google Scholar] [CrossRef]
- Lim, T.P.; Husain, W.; Zakaria, N. Recommender System for Personalized Wellness Therapy. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 54–60. [Google Scholar]
- Lin, Y.; Jessurun, J.; De Vries, B.; Timmermans, H. Motivate: Towards Context-Aware Recommendation Mobile System for Healthy Living. In Proceedings of the Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 23–26 May 2011. [Google Scholar]
- Abdul, A.; Chen, J.; Liao, H.Y.; Chang, S.H. An emotion-aware personalized music recommendation system using a convolutional neural networks approach. Appl. Sci. 2018, 8, 1103. [Google Scholar] [CrossRef] [Green Version]
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Gyrard, A.; Sheth, A. IAMHAPPY: Towards An IoT Knowledge-Based Cross-Domain Well-Being Recommendation System for Everyday Happiness. In Proceedings of the IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) Conference, Crystal City, VA, USA, 16–18 December 2020. [Google Scholar]
- Silverthorn, D.U. Physiologie Humaine: Une Approche Intégrée; Pearson Education: Paris, France, 2007. [Google Scholar]
- Rosenzweig, M.R.; Leiman, A.L.; Breedlove, S.M. Psychobiologie. Rev. Philos. Fr. 2001, 191, 131. [Google Scholar]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.; LaMantia, A.S.; White, L. Neurosciences; De Boeck Supérieur: Louvain-la-Neuve, Belgique, 2019. [Google Scholar]
- Kolb, B.; Whishaw, I.Q.; Teskey, G.C. Cerveau et Comportement; De Boeck Supérieur: Louvain-la-Neuve, Belgique, 2019. [Google Scholar]
- Belzung, C. Biologie des émotions; De Boeck: Louvain-la-Neuve, Belgique, 2007. [Google Scholar]
- Belzung, C. Neurobiologie des émotions; UPPR Editions: Paris, France, 2017. [Google Scholar]
- Breuning, L.G. Habits of a Happy Brain: Retrain Your Brain to Boost Your Serotonin, Dopamine, Oxytocin, & Endorphin Levels; Simon and Schuster: New York, NY, USA, 2015. [Google Scholar]
- de Rosnay, J.; Gouyon, P.H.; Junien, C.; Khayat, D.; Ornish, D. La Révolution Épigénétique: Votre Mode de vie Compte plus que Votre Hérédité; Albin Michel: Paris, France, 2018. [Google Scholar]
- L’impact des Émotions sur l’ADN. Available online: https://www.amazon.fr/Limpact-%C3%A9motions-lADN-Nathalie-Zammatteo/dp/2358051292 (accessed on 17 September 2022).
- Virol, F. Cerveau, Chimie et Psychologie: Neurophysiologie; GRANCHER. 2015. Available online: https://www.amazon.fr/Cerveau-Chimie-Psychologie-Neurophysiologie-psychologie/dp/2733913352 (accessed on 17 September 2022).
- Barrett, L.F. How Emotions Are Made: The Secret Life of the Brain; Houghton Mifflin Harcourt: Boston, MA, USA, 2017. [Google Scholar]
- Barrett, L.F.; Lewis, M.; Haviland-Jones, J.M. Handbook of Emotions; Guilford Publications: New York, NY, USA, 2016. [Google Scholar]
- Paul, E. Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life; OWL Books: New York, NY, USA, 2007. [Google Scholar]
- Lieury, A. Manuel Visuel de Psychologie Cognitive, 4th ed.; Dunod: Paris, France, 2020. [Google Scholar]
- Morange-Majoux, F. Manuel Visuel de Psychophysiologie, 2nd ed.; Dunod: Paris, France, 2017. [Google Scholar]
- Gil, R. Neuropsychologie, 7th ed.; Elsevier Masson: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Seligman, M.E.; Lecomte, J. Vivre la Psychologie Positive: Comment être Heureux au Quotidien par le Fondateur de la Psychologie Positive; InterEditions: Paris, France, 2011. [Google Scholar]
- Seligman, M. Flourish: A Visionary New Understanding of Happiness and Well-Being (Book); Simon and Schuster: New York, NY, USA, 2012. [Google Scholar]
- Lecomte, J. Introduction à la Psychologie Positive; Dunod: Paris, France, 2014. [Google Scholar]
- Palazzolo, J. La Psychologie Positive:«Que sais-je?» n° 4191 Que sais-je. 2020. Available online: https://www.amazon.fr/psychologie-positive-Que-sais-je-4191-ebook/dp/B08J48N446 (accessed on 17 September 2022).
- Arnaud, B.; Mellet, É. La Boîte à Outils de la Psychologie Positive au Travail; Dunod: Paris, France, 2019. [Google Scholar]
- Motte, A.; Larabi, S.; Boutet, S. La boîte à outils du Chief Happiness Officer; Dunod: Paris, France, 2018. [Google Scholar]
- Mikolajczak, M.; Desseilles, M. Traité de régulation des émotions; De Boeck Supérieur: Louvain-la-Neuve, Belgique, 2012. [Google Scholar]
- Goleman, D. Emotional Intelligence: Why It Can Matter More Than IQ; Bantam: New York, NY, USA, 2012. [Google Scholar]
- Couzon, E.; Dorn, F. Les émotions: Développer son Intelligence Émotionnelle; ESF. 2007. Available online: https://www.amazon.fr/%C3%A9motions-D%C3%A9velopper-son-intelligence-%C3%A9motionnelle/dp/2710122979 (accessed on 17 September 2022).
- Ekman, P. Emotions revealed. BMJ 2004, 328, 0405184. [Google Scholar] [CrossRef]
- Kitchenham, B.; Pretorius, R.; Budgen, D.; Brereton, O.P.; Turner, M.; Niazi, M.; Linkman, S. Systematic literature reviews in software engineering—A tertiary study. Inf. Softw. Technol. 2010, 52, 792–805. [Google Scholar] [CrossRef]
- Gyrard, A.; Bonnet, C.; Boudaoud, K.; Serrano, M. LOV4IoT: A Second Life for Ontology-based Domain Knowledge to build Semantic Web of Things Applications. In Proceedings of the IEEE International Conference on Future Internet of Things and Cloud, Vienna, Austria, 22–24 August 2016. [Google Scholar]
- Noura, M.; Gyrard, A.; Heil, S.; Gaedke, M. Automatic Knowledge Extraction to build Semantic Web of Things Applications. IEEE Internet Things J. 2019, 6, 8447–8454. [Google Scholar] [CrossRef]
- Noura, M.; Gyrard, A.; Heil, S.; Gaedke, M. Concept Extraction from the Web of Things Knowledge Bases. In International Conference WWW/Internet; Outstanding Paper Award; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Zenonos, A.; Khan, A.; Kalogridis, G.; Vatsikas, S.; Lewis, T.; Sooriyabandara, M. HealthyOffice: Mood recognition at work using smartphones and wearable sensors. In Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, 14–18 March 2016. [Google Scholar]
- Gyrard, A.; Serrano, M.; Datta, S.; Jares, J.; Intizar, A. Sensor-based Linked Open Rules (S-LOR): An Automated Rule Discovery Approach for IoT Applications and its use in Smart Cities. In Proceedings of the 3rd International ACM Smart City Workshop (AW4city) in conjunction with International World Wide Web Conference (WWW), Perth, Australia, 3–7 April 2017. [Google Scholar]
- Wu, C.H.; Lin, J.C.; Wei, W.L. Survey on audiovisual emotion recognition: Databases, features, and data fusion strategies. APSIPA Trans. Signal Inf. Process. 2014, 3, e12. [Google Scholar] [CrossRef]
- Atmaja, B.T.; Sasou, A.; Akagi, M. Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion. Speech Commun. 2022, 140, 11–28. [Google Scholar] [CrossRef]
- Gyrard, A.; Gaur, M.; Padhee, S.; Sheth, A.; Juganaru-Mathieu, M. Knowledge Extraction for the Web of Things (KE4WoT): WWW 2018 Challenge Summary. In Companion Proceedings of the The Web Conference; ACM: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Gyrard, A.; Atemezing, G.; Serrano, M. PerfectO: An Online Toolkit for Improving Quality, Accessibility, and Classification of Domain-based Ontologies; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. Oops!(ontology pitfall scanner!): An on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. 2014, 10, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Berrueta, D.; Fernández, S.; Frade, I. Cooking HTTP content negotiation with Vapour. In Proceedings of the Workshop on Scripting for the Semantic Web (SFSW), Tenerife, Canary Islands, 2 June 2008. [Google Scholar]
- Gyrard, A.; Serrano, M.; Atemezing, G. Semantic Web Methodologies, Best Practices and Ontology Engineering Applied to Internet of Things. In Proceedings of the IEEE World Forum on Internet of Things, Milan, Italy, 14–16 December 2015. [Google Scholar]
Authors | Year | Project | OA | Reasoning | Text Analysis |
---|---|---|---|---|---|
BioPortal [20] | 2021 | Biomedical ontology catalog | ✓ | No | No |
2009 | but IoT ontologies for emotion not found | ||||
LOV [21] Linked | 2021 | Ontology Catalog | ✓ | No | No |
Open Vocabularies | 2015 | designed by the Semantic Web Community | |||
Hastings, Larsen et al. | 2018 | Emotion Ontology (EMO) | ✓ | No | No |
[22,23] | 2011 | MFOEM: Mental health and disease ontologies | |||
Switzerland, Canada | Taxonomy of emotions | ||||
Lin et al. [24,25] | 2018 | Emotion and Mood Ontology | ✓ | No | No |
2017 | representing visual cues of emotions | ||||
Gil et al. [26] based on | 2015 | Emotion and Cognition ontology used to understand | ✓ | ✓owl:Restriction | No |
Spain | emotions from Emotiv EEG neuroheadset for online learning | ||||
Lopez et al. [27] | 2008 | Describing emotions | ✓ | No | ✓ |
Berthelon et al. [28,29] | 2013 | Emotion Ontology for Context Awareness | ✓ | ✓Corese, SPARQL, | ✓Camera, heart rate |
France | Taxonomy of 6 emotions | regression | |||
Sanchez-Rada et al. | 2018 | Onyx: Describing emotions on the web of data | ✓ | No SPIN mentioned | ✓ |
[30] UPM/Spain | 2016 | ||||
Abaalkhail et al. [31] | 2018 | Survey on 20 ontologies for affective states | No | No | No |
and their influences | |||||
Tabassum et al. [32] | 2018 | EmotiOn ontology for emotion analysis | No | ✓HermiT for consistency | ✓ |
based on Plutchik’s wheel of emotions | and inference | ||||
Chen et al. [33] | 2015 | ECG ontology | ✓ | ✓Event–Condition–Action | ✓ECG |
Arguedas et al. [34] | 2015 | Emotion and Mood Awareness for E-learning | No | ✓Event–Condition–Action | ✓ |
(wiki, chat, forum) | (ECA) rule system | ||||
Tapia et al. [35] | 2014 | Semantic Human Emotion Ontology (SHEO) for text | No | ✓SWRL rules | ✓ |
and images DetectionEmotion: Facial complex emotions | for complex emotions | ||||
Sykora et al. [36] | 2013 | Emotive ontology for social networks | No | No | ✓ |
message analysis (Twitter) | |||||
Ptaszynski et al. [37] | 2012 | Ontology for extracting emotion objects from texts (blogs) | No | No | ✓ |
Baldoni et al. [38] | 2012 | Emotion ontology for Italian art work annotated tags | No | ✓Jena Reasoner | ✓ |
Honold et al. [39] | 2012 | Emotion ontology for nonverbal communication | No | ✓Bayesian | No |
Eyharabide et al. [40] | 2011 | OLA: Ontology for Predicting Learners’ | No | ✓inference, | No |
Affect to infer Emotions | Decision Tree (Weka) | ||||
Francisco et al. [41] | 2010 | Recognizing emotions from voice and text | No | ✓OWL DL, Pellet, Racer | ✓ |
2006 | owl:Restriction, inference | ||||
Grassi et al. [42] | 2011 | Human Emotion Ontology (HEO) for voice, | No | No | ✓ |
2009 | text, gesture, and face | ||||
Radulovic et al. [43] | 2009 | Smiley Ontology (SO): emoticons (smileys as texts or pictures) | No | No | ✓ |
with annotation of emotion classes | |||||
Yan et al. [44] | 2008 | Chinese emotion ontology based on HowNet for text analysis | No | ✓Rules for annotation | ✓ |
Benta et al. [45] | 2007 | User’s affective states | No | ✓Fuzzy Logic in OWL | No |
2005 | for Context-Aware Museum Guide | (logical inference) | |||
Garcia-Rojas et al. [46] | 2006 | Emotional face and body expression profiles | No | ✓RacerPro and nRQL | No |
for virtual human (MPEG-4 animations) | (natural Racer | ||||
Query Language) | |||||
Obrenovic et al. [47] | 2005 | Ontology for description of emotional cues | No | No | ✓ |
2003 | from different modalities (text, speech) |
Name | SNOMEDCT | FMA | RXNORM | MedDRA | LOINC |
---|---|---|---|---|---|
Hormone | SNOMEDCT ✓ | FMA ✓ | RXNORM No | MedDRA No | LOINC No |
Neurotransmitter | SNOMEDCT ✓ | FMA ✓ | RXNORM No | MedDRA No | LOINC No |
Serotonin | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ | MedDRA ✓ * | LOINC ✓ |
Dopamine | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ | MedDRA ✓ * | LOINC ✓ |
Oxytocin | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Glutamate | SNOMEDCT ✓ | FMA No | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Cortisol | SNOMEDCT ✓ | FMA No | RXNORM ✓ * | MedDRA ✓ | LOINC ✓ |
Endorphin | SNOMEDCT ✓ | FMA No | RXNORM ✓ * | MedDRA No | LOINC ✓ * |
Insulin | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ * | MedDRA ✓ | LOINC ✓ |
Glucocorticoid | SNOMEDCT ✓ | FMA No | RXNORM No | MedDRA ✓ * | LOINC No * |
Adrenaline | RXNORM No | MedDRA No | LOINC No | ||
(Epinephrine) | SNOMEDCT ✓ * | FMA ✓ * | |||
Noradrenaline | SNOMEDCT No | FMA No | RXNORM ✓ * | MedDRA ✓ * | LOINC No |
(Norepinephrine) | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Prolactin | SNOMEDCT ✓ | FMA ✓ | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Testosterone | SNOMEDCT ✓ | FMA No | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Oestrogen | SNOMEDCT No | FMA No | RXNORM No | MedDRA ✓ | LOINC No |
Aldosterone | SNOMEDCT ✓ | FMA No | RXNORM ✓ | MedDRA ✓ | LOINC ✓ |
Name | DBpedia | MESH | GALEN | ChEBI |
---|---|---|---|---|
Hormone | DBpedia ✓ | MESH No | GALEN ✓ | ChEBI ✓ |
Neurotransmitter | DBpedia ✓ | MESH ✓ * | GALEN ✓ | ChEBI ✓ |
Serotonin | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Dopamine | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Oxytocin | DBpedia ✓ | MESH ✓ | GALEN No | ChEBI ✓ |
Glutamate | DBpedia ✓ * | MESH ✓ * | GALEN No | ChEBI ✓ * |
Cortisol | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Endorphin | DBpedia ✓ | MESH ✓ * | GALEN ✓ | ChEBI ✓ * |
Insulin | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Glucocorticoid | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Adrenaline | DBpedia ✓ | MESH ✓ * | GALEN ✓ | ChEBI ✓ |
Noradrenaline | DBpedia ✓ * | MESH ✓ * | GALEN ✓ | ChEBI ✓ |
Prolactin | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Testosterone | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Oestrogen | DBpedia ✓ * | MESH No | GALEN ✓ | ChEBI ✓ |
Aldosterone | DBpedia ✓ | MESH ✓ | GALEN ✓ | ChEBI ✓ |
Namespace Prefix | Description Name | Namespace URL |
---|---|---|
dcat | Data Catalog Vocabulary | http://www.w3.org/ns/dcat# |
prov | Provenance Ontology | http://www.w3.org/ns/prov# |
dc | Dublin Core (DC) | http://purl.org/dc/elements/1.1/ |
dcterms | Dublin Core Metadata Terms | http://purl.org/dc/terms/ |
vann | Vocabulary for Annotating Vocabulary Descriptions | http://purl.org/vocab/vann/ |
vs | Vocab Status ontology | http://www.w3.org/2003/06/sw-vocab-status/ns# |
rdf | Resource Description Framework | http://www.w3.org/1999/02/22-rdf-syntax-ns# |
rdfs | Resource Description Framework Schema (RDFS) | http://www.w3.org/2000/01/rdf-schema# |
owl | Ontology Web Language | http://www.w3.org/2002/07/owl# |
m3 | Machine-to-Machine Measurement Sensor Dictionary | http://sensormeasurement.appspot.com/m3# |
saref-core | Smart Applications REFerence ontology | https://saref.etsi.org/core/ |
Web Service Description | Web Service URL and Example |
---|---|
Getting all rules for a specific sensor | http://linkedopenreasoning.appspot.com/slor/rule/{sensorType} |
Example: | |
http://linkedopenreasoning.appspot.com/slor/rule/BodyThermometer (Last accessed on 18 September 2022) | |
sensorType should be compliant with the classes referenced with M3 ontology | |
Update the rule dataset | We can add new sensors in the dataset and add new rules |
by adding a new instantiation within the dataset | |
(see code example above and contribution to the | |
semantic interoperability for IoT white paper 2019 [17]) | |
The GUI to add new sensors: | |
http://linkedopenreasoning.appspot.com/?p=ruleRegistry (Last accessed on 18 September 2022) |
Tool Name | Tool URL |
---|---|
LOV4IoT-Emotion Ontology | http://lov4iot.appspot.com/?p=lov4iot-emotion |
-based IoT Project Catalog | |
LOV4IoT-Emotion Ontology Web Service | http://lov4iot.appspot.com/?p=queryEmotionOntologiesWS |
and Dumps (for Developers) | |
S-LOR Emotion Rule Discovery | http://linkedopenreasoning.appspot.com/?p=slor-emotion |
M3-Emotion Full Scenarios | http://sensormeasurement.appspot.com/?p=emotion |
M3 Emotion Ontology | http://sensormeasurement.appspot.com/ont/m3/emotion# |
Rule Number | Description | Difficulty |
---|---|---|
Rule 1 | Finding a good ontology name | * |
Rule 2 | Finding a good ontology namespace | ** |
Rule 3 | Sharing your ontology online | ** |
Rule 4 | Adding ontology metadata | ** |
Rule 5 | Adding rdfs:label, rdfs:comment, dc:description for each concept and property | * |
Rule 6 | All classes start with an uppercase and properties start with a lowercase | * |
Rule 7 | Submitting your ontology to ontology catalogs | ** |
Rule 8 | Reusing and linking ontologies | *** |
Rule 9 | Deferenceable URI copy paste the namespace URL of your ontology in a web browser to obtain the code | ** |
Rule 10 | Checking syntax validator | * |
Rule 11 | Adding ontology documentation | * |
Rule 12 | Adding ontology visualization | * |
Rule 13 | Improving ontology design | *** |
Rule 14 | Improving dereferencing URI and content negotiation | *** |
Rule 15 | Ontology can be loaded with ontology editors (e.g., Protege) | ** |
Rule 16 | Registering your ontology on prefix catalogs | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyrard, A.; Boudaoud, K. Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health. Appl. Sci. 2022, 12, 9712. https://doi.org/10.3390/app12199712
Gyrard A, Boudaoud K. Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health. Applied Sciences. 2022; 12(19):9712. https://doi.org/10.3390/app12199712
Chicago/Turabian StyleGyrard, Amelie, and Karima Boudaoud. 2022. "Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health" Applied Sciences 12, no. 19: 9712. https://doi.org/10.3390/app12199712
APA StyleGyrard, A., & Boudaoud, K. (2022). Interdisciplinary IoT and Emotion Knowledge Graph-Based Recommendation System to Boost Mental Health. Applied Sciences, 12(19), 9712. https://doi.org/10.3390/app12199712