Affective Computing and Recommender Systems
A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Computing and Artificial Intelligence".
Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 10856
Special Issue Editors
Interests: recommender systems; user modeling; technology-enhanced learning; fintech
Special Issues, Collections and Topics in MDPI journals
Interests: data mining; web mining; machine learning; deep learning; recommender system; decision support in medicine
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Emotional states can play an important role in the process of decision making. Researchers have demonstrated the impact of emotions on the effectiveness of recommender systems. Affective recommender systems (ARS) or emotion-aware recommender systems (EARS) are usually associated with multidisciplinary research, including artificial intelligence, human factors, mood or emotions, facial expressions, and physiological information with human–computer interaction.
The development of affective recommender systems promotes various research topics, such as user interaction and interfaces, algorithm design and evaluations, computational efficiency, deep learning-based recommendation models, and recommendation explanations. This Special Issue on “Affective Computing and Recommender Systems” aims to promote new theoretical models, approaches, algorithms, and applications related to ARS. Possible topics include but are not limited to:
Topics in Affective Computing
- Emotion recognition and detection;
- Sensing and analysis of human emotions;
- Sentimental analysis;
- Emotion corpora and analysis;
- Affect-based information retrieval;
- Affect-based decision making;
- Affective modeling;
- Affective analysis for human factors (e.g., personality traits, trust, etc.).
Topics in ARS/EARS
- Novel and effective models and algorithms for ARS/EARS;
- New approaches to utilize emotions in recommender systems;
- Review mining or sentimental analysis to assist ARS/EARS;
- User-centric studies and evaluations in ARS/EARS;
- Recommendation explanations in ARS/EARS;
- Novel applications in ARS/EARS;
- Emotion detection or recognition in recommender systems;
- Emotion representation or representation learning in recommender systems;
- Novel paradigms and theoretical foundations in ARS/EARS;
- Preference elicitation in ARS/EARS;
- User interface design and user-adaptive interaction in ARS/EARS.
Dr. Yong Zheng
Dr. María N. Moreno García
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- affective computing
- recommender systems
- affective recommender systems
- emotion
- emotion-aware
- emotion-aware recommender systems
- human factors
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.