Pedestrians’ Microscopic Walking Dynamics in Single-File Movement: The Influence of Gender
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Microscopic Variables of Walking Behaviors
2.3. Modeling Pedestrians’ Interactions Using Multiple Linear Regression
3. Results
3.1. Characteristics of the Microscopic Interactions
3.2. Outcomes of the Multiple Linear Regression Model
- Models for acceleration behavior
- Models for deceleration behavior
4. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rio, K.W.; Dachner, G.C.; Warren, W.H. Local interactions underlying collective motion in human crowds. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180611. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ye, Z.; Shiwakoti, N.; Tang, D.; Lin, J. Examining effect of architectural adjustment on pedestrian crowd flow at bottleneck. Phys. A Stat. Mech. Its Appl. 2019, 522, 350–364. [Google Scholar] [CrossRef]
- Asano, M.; Kuwahara, M.; Tanaka, S. Multi-directional pedestrian flow model based on empirical data. In Proceedings of the 11th World Conference on Transport and Safety Research, Berkeley, CA, USA, 24–28 June 2007; World Conference on Transport Research Society: Lyon, France, 2007. [Google Scholar]
- Wong, S.C.; Leung, W.L.; Chan, S.H.; Lam, W.H.; Yung, N.H.; Liu, C.Y.; Zhang, P. Bidirectional pedestrian stream model with oblique intersecting angle. J. Transp. Eng. 2010, 136, 234–242. [Google Scholar] [CrossRef]
- Plaue, M.; Chen, M.; Bärwolff, G.; Schwandt, H. Trajectory Extraction and Density Analysis of Intersecting Pedestrian Flows from Video Recordings. In Proceedings of the ISPRS Conference on Photogrammetric Image Analysis, Munich, Germany, 5–7 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 285–296. [Google Scholar]
- Lian, L.; Mai, X.; Song, W.; Richard, Y.K.K.; Wei, X.; Ma, J. An experimental study on four-directional intersecting pedestrian flows. J. Stat. Mech. Theory Exp. 2015, 2015, P08024. [Google Scholar] [CrossRef]
- Aghabayk, K.; Radmehr, K.; Shiwakoti, N. Effect of Intersecting Angle on Pedestrian Crowd Flow under Normal and Evacuation Conditions. Sustainability 2020, 12, 1301. [Google Scholar] [CrossRef]
- Zhang, J.; Klingsch, W.; Schadschneider, A.; Seyfried, A. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions. J. Stat. Mech. Theory Exp. 2011, 2011, P06004. [Google Scholar] [CrossRef]
- Shiwakoti, N.; Gong, Y.; Shi, X.; Ye, Z. Examining influence of merging architectural features on pedestrian crowd movement. Saf. Sci. 2015, 75, 15–22. [Google Scholar] [CrossRef]
- Aghabayk, K.; Sarvi, M.; Ejtemai, O.; Sobhani, A. Impacts of different angles and speeds on behavior of pedestrian crowd merging. Transp. Res. Rec. 2015, 2490, 76–83. [Google Scholar] [CrossRef]
- Shi, X.; Ye, Z.; Shiwakoti, N.; Tang, D.; Wang, C.; Wang, W. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis. Accid. Anal. Prev. 2016, 95, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Lian, L.; Mai, X.; Song, W.; Richard, Y.K.K.; Rui, Y.; Jin, S. Pedestrian merging behavior analysis: An experimental study. Fire Saf. J. 2017, 91, 918–925. [Google Scholar] [CrossRef]
- Shahhoseini, Z.; Sarvi, M.; Saberi, M. Pedestrian crowd dynamics in merging sections: Revisiting the “faster-is-slower” phenomenon. Phys. A Stat. Mech. Its Appl. 2018, 491, 101–111. [Google Scholar] [CrossRef]
- Zhang, J.; Klingsch, W.; Rupprecht, T.; Schadschneider, A.; Seyfried, A. Empirical study of turning and merging of pedestrian streams in T-junction. In Proceedings of the Fourth International Symposium on Agent-Based Modeling and Simulation (ABModSim-4), Vienna, Austria, 10–13 April 2012. [Google Scholar]
- Dias, C.; Ejtemai, O.; Sarvi, M.; Shiwakoti, N. Pedestrian walking characteristics through angled corridors: An experimental study. Transp. Res. Rec. 2014, 2421, 41–50. [Google Scholar] [CrossRef]
- Ye, R.; Chraibi, M.; Liu, C.; Lian, L.; Zeng, Y.; Zhang, J.; Song, W. Experimental study of pedestrian flow through right-angled corridor: Uni-and bidirectional scenarios. J. Stat. Mech. Theory Exp. 2019, 2019, 043401. [Google Scholar] [CrossRef]
- Rahman, N.A.; Alias, N.A.; Sukor NS, A.; Halim, H.; Gotoh, H.; Hassan, F.H. Trajectories and walking velocity of pedestrian walking through angled-corridors: A unidirectional scenario. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019; IOP Publishing: Bristol, UK, 2019; Volume 572, p. 012114. [Google Scholar]
- Daamen, W.; Hoogendoorn, S.P. Experimental research of pedestrian walking behavior. Transp. Res. Rec. 2003, 1828, 20–30. [Google Scholar] [CrossRef]
- Seyfried, A.; Passon, O.; Steffen, B.; Boltes, M.; Rupprecht, T.; Klingsch, W. New insights into pedestrian flow through bottlenecks. Transp. Sci. 2009, 43, 395–406. [Google Scholar] [CrossRef]
- Zhang, J.; Klingsch, W.; Schadschneider, A.; Seyfried, A. Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. Theory Exp. 2012, 2012, P02002. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Daamen, W. Pedestrian behavior at bottlenecks. Transp. Sci. 2005, 39, 147–159. [Google Scholar] [CrossRef]
- Sun, L.; Yang, Z.; Rong, J.; Liu, X. Study on the weaving behavior of high density bidirectional pedestrian flow. Math. Probl. Eng. 2014, 2014, 765659. [Google Scholar] [CrossRef]
- Liao, W.; Seyfried, A.; Zhang, J.; Boltes, M.; Zheng, X.; Zhao, Y. Experimental study on pedestrian flow through wide bottleneck. Transp. Res. Procedia 2014, 2, 26–33. [Google Scholar] [CrossRef]
- Shiwakoti, N.; Shi, X.; Ye, Z. A review on the performance of an obstacle near an exit on pedestrian crowd evacuation. Saf. Sci. 2019, 113, 54–67. [Google Scholar] [CrossRef]
- Adrian, J.; Seyfried, A.; Sieben, A. Crowds in front of bottlenecks at entrances from the perspective of physics and social psychology. J. R. Soc. Interface 2020, 17, 20190871. [Google Scholar] [CrossRef]
- Shi, X.; Ye, Z.; Shiwakoti, N.; Grembek, O. A state-of-the-art review on empirical data collection for external governed pedestrians complex movement. J. Adv. Transp. 2018, 2018, 1063043. [Google Scholar] [CrossRef]
- Haghani, M. Empirical methods in pedestrian, crowd and evacuation dynamics: Part I. Experimental methods and emerging topics. Saf. Sci. 2020, 129, 104743. [Google Scholar] [CrossRef]
- Yanagisawa, D.; Kimura, A.; Tomoeda, A.; Nishi, R.; Suma, Y.; Ohtsuka, K.; Nishinari, K. Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys. Rev. E 2009, 80, 036110. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.Y.; Tang, T.Q. A simulation model for pedestrian flow through walkways with corners. Simul. Model. Pract. Theory 2012, 21, 103–113. [Google Scholar] [CrossRef]
- Dias, C.; Ejtemai, O.; Sarvi, M.; Burd, M. Exploring pedestrian walking through angled corridors. Transp. Res. Procedia 2014, 2, 19–25. [Google Scholar] [CrossRef]
- Dias, C.; Lovreglio, R. Calibrating cellular automaton models for pedestrians walking through corners. Phys. Lett. A 2018, 382, 1255–1261. [Google Scholar] [CrossRef]
- Duives, D.C.; Daamen, W.; Hoogendoorn, S.P. State-of-the-art crowd motion simulation models. Transp. Res. Part C Emerg. Technol. 2013, 37, 193–209. [Google Scholar] [CrossRef]
- Fitzpatrick, K.; Brewer, M.A.; Turner, S. Another look at pedestrian walking speed. Transp. Res. Rec. 2006, 1982, 21–29. [Google Scholar] [CrossRef]
- Montufar, J.; Arango, J.; Porter, M.; Nakagawa, S. Pedestrians’ normal walking speed and speed when crossing a street. Transp. Res. Rec. 2007, 2002, 90–97. [Google Scholar] [CrossRef]
- Semeunović, M.; Tanackov, I.; Pitka, P.; Simeunović, M.; Papić, Z. Determination of Moving Speed of School Age Children. Math. Probl. Eng. 2021, 9965753. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, S.; Salden, D.; Ma, J. Homogeneity and activeness of crowd on aged pedestrian dynamics. Procedia Comput. Sci. 2016, 83, 361–368. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Salden, D.; Ma, J.; Zhang, R. Pedestrian dynamics in single-file movement of crowd with different age compositions. Phys. Rev. E 2016, 94, 012312. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, J.; Song, W. Contrastive study on the single-file pedestrian movement of the elderly and other age groups. J. Stat. Mech. Theory Exp. 2019, 2019, 093402. [Google Scholar] [CrossRef]
- Subaih, R.; Maree, M.; Chraibi, M.; Awad, S.; Zanoon, T. Gender-based insights into the fundamental diagram of pedestrian dynamics. In Proceedings of the International Conference on Computational Collective Intelligence, Hendaye, France, 4–6 September 2019; Springer: Cham, Switzerland, 2019; pp. 613–624. [Google Scholar]
- Subaih, R.; Maree, M.; Chraibi, M.; Awad, S.; Zanoon, T. Experimental investigation on the alleged gender-differences in pedestrian dynamics: A study reveals no gender differences in pedestrian movement behavior. IEEE Access 2020, 8, 33748–33757. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Song, W.; Zhang, R. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment. J. Stat. Mech. Theory Exp. 2018, 2018, 033402. [Google Scholar] [CrossRef]
- Paetzke, S.; Boltes, M.; Seyfried, A. Influence of individual factors on fundamental diagrams of pedestrians. Phys. A Stat. Mech. Appl. 2022, 595, 127077. [Google Scholar] [CrossRef]
- Xue, S.Q.; Shiwakoti, N.; Shi, X.M.; Xiao, Y. Investigating the characteristic delay time in the leader-follower behavior in children single-file movement. Chin. Phys. B 2022. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 2013, 100, 127–133. [Google Scholar] [CrossRef]
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef] [Green Version]
- Helly, W. Simulation of bottlenecks in single-lane traffic flow. In Proceedings of the Symposium on Theory of Traffic Flow, Research Laboratories, General Motors, Warren, MI, USA; Elsevier: New York, NY, USA, 1959; pp. 207–238. [Google Scholar]
- Duives, D.C.; Daamen, W.; Hoogendoorn, S.P. Operational walking dynamics of crowds modeled with linear regression. Transp. Res. Rec. 2017, 2623, 90–97. [Google Scholar] [CrossRef]
- Gurusinghe, G.S.; Nakatsuji, T.; Azuta, Y.; Ranjitkar, P.; Tanaboriboon, Y. Multiple car-following data with real-time kinematic global positioning system. Transp. Res. Rec. 2002, 1802, 166–180. [Google Scholar] [CrossRef]
- Ranjitkar, P.; Nakatsuji, T.; Azuta, Y.; Gurusinghe, G.S. Stability analysis based on instantaneous driving behavior using car-following data. Transp. Res. Rec. 2003, 1852, 140–151. [Google Scholar] [CrossRef]
- Le Runigo, C.; Benguigui, N.; Bardy, B.G. Visuo-motor delay, information–movement coupling, and expertise in ball sports. J. Sports Sci. 2010, 28, 327–337. [Google Scholar] [CrossRef]
- Rio, K.W.; Rhea, C.K.; Warren, W.H. Follow the leader: Visual control of speed in pedestrian following. J. Vis. 2014, 14, 4. [Google Scholar] [CrossRef]
- Brackstone, M.; McDonald, M. Car-following: A historical review. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 181–196. [Google Scholar] [CrossRef]
- Lee, J.J.; Jones, J.H. Traffic dynamics: Visual angle car following models. Traffic Eng. Control 1967, 8. [Google Scholar]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef]
- Johansson, A.; Helbing, D.; Shukla, P.K. Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 2007, 10 (Suppl. S2), 271–288. [Google Scholar] [CrossRef]
- Tang, T.; Huang, H.; Shang, H. A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 2012, 67, 437–443. [Google Scholar] [CrossRef]
- Jelić, A.; Appert-Rolland, C.; Lemercier, S.; Pettré, J. Properties of pedestrians walking in line: Fundamental diagrams. Phys. Rev. E 2012, 85, 036111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Chen, M.; Xu, L.; Liang, J.; Yao, M.; Wang, P. Analysis of headway-velocity relation in one and two-dimensional pedestrian flows. Saf. Sci. 2020, 129, 104804. [Google Scholar] [CrossRef]
- Chattaraj, U.; Seyfried, A.; Chakroborty, P. Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 2009, 12, 393–405. [Google Scholar] [CrossRef] [Green Version]
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
N = 14 | Regression | 26.229 | 3 | 8.743 | 541.478 | 0.000 |
Residual | 35.086 | 2173 | 0.016 | |||
Total | 61.315 | 2176 | ||||
N = 20 | Regression | 40.382 | 3 | 13.461 | 757.273 | 0.000 |
Residual | 99.719 | 5610 | 0.018 | |||
Total | 140.100 | 5613 | ||||
N = 24 | Regression | 66.333 | 3 | 22.111 | 1433.751 | 0.000 |
Residual | 207.021 | 13,424 | 0.015 | |||
Total | 273.353 | 13,427 | ||||
N = 30 | Regression | 64.867 | 3 | 21.622 | 1701.145 | 0.000 |
Residual | 278.269 | 21,893 | 0.013 | |||
Total | 343.136 | 21,896 |
Model | Coefficients | t | Sig. | ||
---|---|---|---|---|---|
B | Std. Error | ||||
N = 14 | (Constant) | 0.048 | 0.014 | 3.480 | 0.001 |
DS | 0.067 | 0.011 | 6.295 | 0.000 | |
DV | 1.072 | 0.027 | 39.274 | 0.000 | |
gender | −0.050 | 0.005 | −9.214 | 0.000 | |
N = 20 | (Constant) | 0.085 | 0.010 | 8.539 | 0.000 |
DS | 0.088 | 0.012 | 7.607 | 0.000 | |
DV | 0.791 | 0.017 | 46.529 | 0.000 | |
gender | −0.027 | 0.004 | −7.418 | 0.000 | |
N = 24 | (Constant) | 0.134 | 0.005 | 24.581 | 0.000 |
DS | 0.009 | 0.007 | 1.286 | 0.198 | |
DV | 0.706 | 0.011 | 64.663 | 0.000 | |
gender | −0.010 | 0.002 | −4.539 | 0.000 | |
N = 30 | (Constant) | 0.110 | 0.003 | 42.342 | 0.000 |
DS | 0.036 | 0.004 | 9.916 | 0.000 | |
DV | 0.523 | 0.008 | 69.504 | 0.000 | |
gender | −0.003 | 0.002 | −1.960 | 0.050 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
N = 14 | Regression | 3.099 | 3 | 1.033 | 124.576 | 0.000 |
Residual | 9.584 | 1156 | 0.008 | |||
Total | 12.683 | 1159 | ||||
N = 20 | Regression | 46.374 | 3 | 15.458 | 893.690 | 0.000 |
Residual | 88.974 | 5144 | 0.017 | |||
Total | 135.348 | 5147 | ||||
N = 24 | Regression | 52.049 | 3 | 17.350 | 1394.864 | 0.000 |
Residual | 153.253 | 12,321 | 0.012 | |||
Total | 205.302 | 12,324 | ||||
N = 30 | Regression | 61.715 | 3 | 20.572 | 2027.086 | 0.000 |
Residual | 212.323 | 20,922 | 0.010 | |||
Total | 274.038 | 20,925 |
Model | Coefficients | t | Sig. | ||
---|---|---|---|---|---|
B | Std. Error | ||||
N = 14 | (Constant) | 0.135 | 0.012 | 10.910 | 0.000 |
DS | 0.003 | 0.010 | 0.260 | 0.795 | |
DV | −0.585 | 0.032 | −18.269 | 0.000 | |
gender | −0.027 | 0.006 | −4.967 | 0.000 | |
N = 20 | (Constant) | 0.182 | 0.009 | 19.570 | 0.000 |
DS | 0.003 | 0.011 | 0.270 | 0.787 | |
DV | −0.852 | 0.017 | −49.695 | 0.000 | |
gender | −0.064 | 0.004 | −17.193 | 0.000 | |
N = 24 | (Constant) | 0.163 | 0.005 | 32.863 | 0.000 |
DS | −0.013 | 0.006 | −2.025 | 0.043 | |
DV | −0.677 | 0.011 | −64.249 | 0.000 | |
gender | −0.020 | 0.002 | −10.133 | 0.000 | |
N = 30 | (Constant) | 0.129 | 0.002 | 57.295 | 0.000 |
DS | 0.000 | 0.003 | −0.072 | 0.942 | |
DV | −0.554 | 0.007 | −77.549 | 0.000 | |
gender | −0.011 | 0.001 | −7.694 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, C.; Abdullah, M.; Ahmed, D.; Subaih, R. Pedestrians’ Microscopic Walking Dynamics in Single-File Movement: The Influence of Gender. Appl. Sci. 2022, 12, 9714. https://doi.org/10.3390/app12199714
Dias C, Abdullah M, Ahmed D, Subaih R. Pedestrians’ Microscopic Walking Dynamics in Single-File Movement: The Influence of Gender. Applied Sciences. 2022; 12(19):9714. https://doi.org/10.3390/app12199714
Chicago/Turabian StyleDias, Charitha, Muhammad Abdullah, Dawood Ahmed, and Rudina Subaih. 2022. "Pedestrians’ Microscopic Walking Dynamics in Single-File Movement: The Influence of Gender" Applied Sciences 12, no. 19: 9714. https://doi.org/10.3390/app12199714
APA StyleDias, C., Abdullah, M., Ahmed, D., & Subaih, R. (2022). Pedestrians’ Microscopic Walking Dynamics in Single-File Movement: The Influence of Gender. Applied Sciences, 12(19), 9714. https://doi.org/10.3390/app12199714