Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network
Abstract
:1. Introduction
2. Methods
2.1. Data Preparation
2.1.1. Physical Model and Numerical Simulation
2.1.2. Data Preprocessing
2.1.3. Injection Position and Geometry Representation
2.2. Architecture of CNNs
2.3. Model Training
3. Results
3.1. Prediction Results of the Network Model
3.1.1. Blood Vessels with Idealized Geometry
3.1.2. The Human Hepatic Arterial System
3.1.3. Computational Time for Network Prediction and Numerical Simulation
3.2. Hyperparameter Study
3.2.1. Influence of Model Structure and Input Presentation
3.2.2. Influence of Number of Network Layers
3.2.3. Influence of Learning Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Cabibbo, G.; Latteri, F.; Antonucci, M.; Craxì, A. Multimodal Approaches to the Treatment of Hepatocellular Carcinoma. Nat. Clin. Pract. Gastroenterol. Hepatol. 2009, 6, 159–169. [Google Scholar] [CrossRef]
- Tang, A.; Hallouch, O.; Chernyak, V.; Kamaya, A.; Sirlin, C.B. Epidemiology of Hepatocellular Carcinoma: Target Population for Surveillance and Diagnosis. Abdom. Radiol. 2018, 43, 13–25. [Google Scholar] [CrossRef]
- Wondergem, M.; Smits, M.L.J.; Elschot, M.; de Jong, H.W.A.M.; Verkooijen, H.M.; van den Bosch, M.A.A.J.; Nijsen, J.F.W.; Lam, M.G.E.H. 99mTc-Macroaggregated Albumin Poorly Predicts the Intrahepatic Distribution of 90Y Resin Microspheres in Hepatic Radioembolization. J. Nucl. Med. 2013, 54, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Segmental Perfusion Differences on Paired Tc-99m Macroaggregated Albumin (MAA) Hepatic Perfusion Imaging and Yttrium-90 (Y-90) Bremsstrahlung Imaging Studies in SIR-Sphere Radioembolization: Associations with Angiography. Available online: https://doi.org/10.4172/2155-9619.1000122 (accessed on 19 August 2022).
- Bomberna, T.; Koudehi, G.A.; Claerebout, C.; Verslype, C.; Maleux, G.; Debbaut, C. Transarterial Drug Delivery for Liver Cancer: Numerical Simulations and Experimental Validation of Particle Distribution in Patient-Specific Livers. Expert Opin. Drug Deliv. 2021, 18, 409–422. [Google Scholar] [CrossRef]
- Peeters, G.; Debbaut, C.; Cornillie, P.; De Schryver, T.; Monbaliu, D.; Laleman, W.; Segers, P. A Multilevel Modeling Framework to Study Hepatic Perfusion Characteristics in Case of Liver Cirrhosis. J. Biomech. Eng. 2015, 137, 051007. [Google Scholar] [CrossRef]
- Tatlisoz, M.M.; Demirturk, E.; Canpolat, C. Release Characteristics of Gliclazide in a Matrix System. Silico Pharmacol. 2021, 9, 12. [Google Scholar] [CrossRef]
- Lin, Q. Numerical Simulation and Experimental Study for Vascular Interventional Treatment by Bifurcated Artery. Ph.D. Thesis, University of Sichuan, Chengdu, China, 1 October 2004. [Google Scholar]
- Basciano, C.A.; Kleinstreuer, C.; Kennedy, A.S.; Dezarn, W.A.; Childress, E. Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System. Ann. Biomed. Eng. 2010, 38, 1862–1879. [Google Scholar] [CrossRef]
- Aramburu1, J.; Antón1, R.; Rivas1, A.; Ramos1, J.C.; Sangro, B.; Bilbao, J.I. Computational Particle–Haemodynamics Analysis of Liver Radioembolization Pretreatment as an Actual Treatment Surrogate. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e02791. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 431–440. [Google Scholar] [CrossRef]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network. Adv. Neural Inf. Process. Syst. 2014, 3, 2366–2374. [Google Scholar]
- Gupta1, S.; Girshick1, R.; Arbelaez, P.; Malik1, J. Learning Rich Features from RGB-D Images for Object Detection and Segmentation. Eur. Conf. Comput. Vis. 2014, 8695, 345–360. [Google Scholar]
- Han, R.; Wang, Y.; Zhang, Y.; Chen, G. A New Prediction Method of Unsteady Wake Flow by the Hybrid Deep Neural Network. arXiv 2019, arXiv:1908.00294. [Google Scholar]
- Peng, J.-Z.; Chen, S.; Aubry, N.; Chen, Z.; Wu, W.T. Unsteady Reduced-Order Model of Flow over Cylinders Based on Convolutional and Deconvolutional Neural Network Structure. Phys. Fluids 2020, 32, 123609. [Google Scholar] [CrossRef]
- Peng, J.-Z.; Chen, S.; Aubry, N.; Chen, Z.-H.H.; Wu, W.-T.T. Time-Variant Prediction of Flow over an Airfoil Using Deep Neural Network. Phys. Fluids 2020, 32, 123602. [Google Scholar] [CrossRef]
- Peng, J.-Z.; Aubry, N.; Zhu, S.; Chen, Z.; Wu, W.-T. Geometry and Boundary Condition Adaptive Data-Driven Model of Fluid Flow Based on Deep Convolutional Neural Networks. Phys. Fluids 2021, 123602, 123602. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Jing, Q.; Xie, Y.; Zhang, D. Supervised Learning Method for the Physical Field Reconstruction in a Nanofluid Heat Transfer Problem. Int. J. Heat Mass Transf. 2021, 165, 120684. [Google Scholar] [CrossRef]
- Liu, S.; Tang, B.; Chen, Q.; Wang, X. Drug-Drug Interaction Extraction via Convolutional Neural Networks. Comput. Math. Methods Med. 2016, 2016, 6918381. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Paniagua, V.; Segura-Bedmar, I. Evaluation of Pooling Operations in Convolutional Architectures for Drug-Drug Interaction Extraction. BMC Bioinform. 2018, 19, 209–247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lu, Y.; Zang, T. CNN-DDI: A Learning-Based Method for Predicting Drug-Drug Interactions Using Convolution Neural Networks. BMC Bioinform. 2022, 23, 88. [Google Scholar] [CrossRef]
- Teng, H. Construction and Drug Evaluation Based on Convolutional Neural Network System Optimized by Grey Correlation Analysis. Comput. Intell. Neurosci. 2021, 2021, 2794588. [Google Scholar] [CrossRef]
- Meyer, J.G.; Liu, S.; Miller, I.J.; Coon, J.J.; Gitter, A. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests. J. Chem. Inf. Model. 2019, 59, 4438–4449. [Google Scholar] [CrossRef] [Green Version]
- Koops, A.; Wojciechowski, B.; Broering, D.C.; Adam, G.; Krupski-Berdien, G. Anatomic Variations of the Hepatic Arteries in 604 Selective Celiac and Superior Mesenteric Angiographies. Surg. Radiol. Anat. 2004, 26, 239–244. [Google Scholar] [CrossRef]
- Hiatt, J.R.; Gabbay, J.; Busuttil, R.W. Surgical Anatomy of the Hepatic Arteries in 1000 Cases. Ann. Surg. 1994, 220, 50–52. [Google Scholar] [CrossRef]
- Michels, N.A. Newer Anatomy of Liver-Variant Blood Supply and Collateral Circulation. J. Am. Med. Assoc. 1960, 172, 125–132. [Google Scholar] [CrossRef]
- Ishigami, K.; Zhang, Y.; Rayhill, S.; Katz, D.; Stolpen, A. Does Variant Hepatic Artery Anatomy in a Liver Transplant Recipient Increase the Risk of Hepatic Artery Complications after Transplantation? Am. J. Roentgenol. 2004, 183, 1577–1584. [Google Scholar] [CrossRef]
- Han, S.H.B.; Rice, S.; Cohen, S.M.; Reynolds, T.B.; Fong, T.L. Duplex Doppler Ultrasound of the Hepatic Artery in Patients with Acute Alcoholic Hepatitis. J. Clin. Gastroenterol. 2002, 34, 573–577. [Google Scholar] [CrossRef]
- Perktold, K.; Resch, M.; Florian, H. Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model. J. Biomech. Eng. 1991, 113, 464–475. [Google Scholar] [CrossRef]
- Pedley, T.J. The Fluid Mechanics of Large Blood Vessels; Cambridge University Press: Cambridge, UK, 1980; ISBN 9780521089562. [Google Scholar]
- Fung, Y.C. Biomechanics: Circulation; Springer: New York, NY, USA, 1997. [Google Scholar]
- Markou, C.P.; Brown, J.E.; Pursley, M.D.; Hanson, S.R. Boundary Layer Drug Delivery Using a Helical Catheter. J. Control. Release 1998, 53, 281–288. [Google Scholar] [CrossRef]
- Blumenthal, R.D.; Osorio, L.; Ochakovskaya, R.; Ying, Z.; Goldenberg, D.M. Regulation of Tumour Drug Delivery by Blood Flow Chronobiology. Eur. J. Cancer 2000, 36, 1876–1884. [Google Scholar] [CrossRef]
- Buchanan, J.R.; Kleinstreuer, C.; Comer, J.K. Rheological Effects on Pulsatile Hemodynamics in a Stenosed Tube. Comput. Fluids 2000, 29, 695–724. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Basciano, C.A.; Childress, E.M.; Kennedy, A.S. A New Catheter for Tumor Targeting with Radioactive Microspheres in Representative Hepatic Artery Systems. Part I: Impact of Catheter Presence on Local Blood Flow and Microsphere Delivery. J. Biomech. Eng. 2012, 134, 051004. [Google Scholar] [CrossRef] [PubMed]
- The Role of Angled-Tip Microcatheter and Microsphere Injection Velocity in Liver Radioembolization: A Computational Particle–Hemodynamics Study. Available online: https://doi.org/10.1002/cnm.2895 (accessed on 19 August 2022).
- Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance Regularized Level Set Evolution and Its Application to Image Segmentation. IEEE Trans. Image Process. 2010, 19, 3243–3254. [Google Scholar] [CrossRef]
- Park, J.J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. Deepsdf: Learning Continuous Signed Distance Functions for Shape Representation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 165–174. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.A.; Yalim Keles, H. Foreground Segmentation Using Convolutional Neural Networks for Multiscale Feature Encoding. Pattern Recognit. Lett. 2018, 112, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Bang, S.; Park, S.; Kim, H.; Kim, H. Encoder–Decoder Network for Pixel-Level Road Crack Detection in Black-Box Images. Comput. Civ. Infrastruct. Eng. 2019, 34, 713–727. [Google Scholar] [CrossRef]
- Jais, I.K.M.; Ismail, A.R.; Nisa, S.Q. Adam Optimization Algorithm for Wide and Deep Neural Network. Knowl. Eng. Data Sci. 2019, 2, 41. [Google Scholar] [CrossRef]
Batch Size | λ | |||||
---|---|---|---|---|---|---|
Bifurcated blood vessels | 12 | 0.00008 | 0.99 | 0.999 | 0.0001 | 0.0006 |
Hepatic Artery(HA) | 32 | 0.001 | 0.99 | 0.999 | 0.0001 | 0.00005 |
Datasets | CNNs Training (s) | CNNs Prediction (s) | Numerical Simulation (s) | Grid Quantity | Speedup |
---|---|---|---|---|---|
Straight vessels | 1508 | 0.066 | 698 | 24,200 | 10,576 |
Single branch vessels | 2202 | 0.061 | 2075 | 39,600 | 34,016 |
Hepatic artery vessels | 2478 | 0.062 | 8242 | 143,730 | 132,935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.-Y.; Hua, Y.; Aubry, N.; Zhussupbekov, M.; Antaki, J.F.; Zhou, Z.-F.; Peng, J.-Z. Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network. Appl. Sci. 2022, 12, 10554. https://doi.org/10.3390/app122010554
Yuan X-Y, Hua Y, Aubry N, Zhussupbekov M, Antaki JF, Zhou Z-F, Peng J-Z. Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network. Applied Sciences. 2022; 12(20):10554. https://doi.org/10.3390/app122010554
Chicago/Turabian StyleYuan, Xin-Yi, Yue Hua, Nadine Aubry, Mansur Zhussupbekov, James F. Antaki, Zhi-Fu Zhou, and Jiang-Zhou Peng. 2022. "Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network" Applied Sciences 12, no. 20: 10554. https://doi.org/10.3390/app122010554
APA StyleYuan, X. -Y., Hua, Y., Aubry, N., Zhussupbekov, M., Antaki, J. F., Zhou, Z. -F., & Peng, J. -Z. (2022). Real-Time Prediction of Transarterial Drug Delivery Based on a Deep Convolutional Neural Network. Applied Sciences, 12(20), 10554. https://doi.org/10.3390/app122010554