Relationship between Surface Hardness and Peak Interfacial Frictional Coefficient in a Laboratory Scale Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sand
2.2. Model Piles
2.3. Test Equipment
2.4. Test Program
3. Results and Discussion
3.1. Interfacial Shear Characteristics
3.1.1. The Effect of Surface Hardness on Interfacial Shear Characteristics
3.1.2. The Effect of Particle Size on Interfacial Shear Characteristics
3.2. Peak Interfacial Friction Coefficient
3.2.1. Relationship between Surface Hardness and Peak Interfacial Friction Coefficient
3.2.2. Relationship between Particle Size and Peak Interfacial Friction Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
τp | peak interfacial shear stress. |
σn | normal stress. |
μp | peak interface friction coefficient. |
μpa | peak interfacial friction coefficient at aluminum alloy pile (HV = 350). |
μpp | peak interfacial friction coefficient at Polymethyl methacrylate pile (HV = 95). |
μps | peak interfacial friction coefficient at #45 steel pile (HV = 660). |
References
- Dejong, J.T.; Westgate, Z.J. Role of overconsolidation on sand–geomembrane interface response and material damage evolution. Geotext. Geomembr. 2005, 23, 486–512. [Google Scholar] [CrossRef]
- Dejong, J.T.; White, D.J.; Randolph, M.F. Microscale observation and modeling of soil–structure interface behavior using particle image velocimetry. Soils Found. 2006, 46, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Frost, J.D.; Kim, D.; Lee, S.W. Microscale geomembrane–granular material interactions. KSCE J. Civ. Eng. 2012, 16, 79–92. [Google Scholar] [CrossRef]
- Taha, A.; Fall, M. Shear behavior of sensitive marine clay–concrete interfaces. J. Geotech. Geoenviron. Eng. 2013, 139, 644–650. [Google Scholar] [CrossRef]
- Chen, X.B.; Zhang, J.S.; Xiao, Y.J.; Li, J. Effect of roughness on shear behavior of red clay–concrete interface in large-scale direct shear tests. Can. Geotech. J. 2015, 52, 1122–1135. [Google Scholar] [CrossRef]
- Tehrani, F.S.; Han, F.; Salgado, R.; Prezzi, M.; Tovar, R.D.; Castro, A.G. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand. Géotechnique 2016, 66, 386–400. [Google Scholar] [CrossRef]
- Yavari, N.; Tang, A.M.; Pereira, J.M.; Hassen, G. Effect of temperature on the shear strength of soils and the soil–structure interface. Can. Geotech. J. 2016, 53, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Frost, J.D. Particle-scale effects on global axial and torsional interface shear behavior. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 400–421. [Google Scholar] [CrossRef]
- Samanta, M.; Punetha, P.; Sharma, M. Influence of surface texture on sand–steel interface strength response. Géotech. Lett. 2018, 8, 40–48. [Google Scholar] [CrossRef]
- Tovar-Valencia, R.D.; Galvis-Castro, A.; Salgado, R.; Prezzi, M. Effect of surface roughness on the shaft resistance of displacement model piles in sand. J. Geotech. Geoenviron. Eng. 2018, 144, 04017120. [Google Scholar] [CrossRef]
- Rehman, Z.; Zhang, G. Shear coupling effect of monotonic and cyclic behavior of the interface between steel and gravel. Can. Geotech. J. 2019, 56, 876–884. [Google Scholar] [CrossRef]
- Rehman, Z.; Luo, F.; Wang, T.; Zhang, G. Large-scale test study on the three-dimensional behavior of the gravel–concrete interface of a CFR dam. Int. J. Geomech. 2020, 26, 04020046. [Google Scholar] [CrossRef]
- Zhou, W.J.; Guo, Z.; Wang, L.Z.; Rui, S.J. Sand–steel interface behaviour under large–displacement and cyclic shear. Soil Dyn. Earthq. Eng. 2020, 138, 106352. [Google Scholar] [CrossRef]
- Zhou, J.J.; Yu, J.J.; Gong, X.N.; Naggar, M.H.E.; Zhang, R. The effect of cemented soil strength on the frictional capacity of precast concrete pile-cemented soil interface. Acta Geotech. 2020, 15, 3271–3282. [Google Scholar] [CrossRef]
- Rehman, Z.; Zhang, G. Cyclic behavior of gravel–steel interface under varying rotational shear paths. Can. Geotech. J. 2021, 58, 305–316. [Google Scholar] [CrossRef]
- Rui, S.J.; Wang, L.Z.; Guo, Z.; Cheng, X.; Wu, B. Monotonic behavior of interface shear between carbonate sands and steel. Acta Geotech. 2021, 16, 167–187. [Google Scholar] [CrossRef]
- Potyondy, J.G. Skin friction between various soils and construction material. Géotechnique 1961, 11, 339–353. [Google Scholar] [CrossRef]
- Tiwari, B.; Al-Adhadh, A.R. Influence of relative density on static soil–structure frictional resistance of dry and saturated sand. Geotech. Geol. Eng. 2014, 32, 411–427. [Google Scholar] [CrossRef]
- Gireesha, T.; Muthukkumaran, K. Study on soil structure interface strength properties. Int. J. Earth Sci. Eng. 2011, 4, 89–93. [Google Scholar]
- O’Rourke, T.S.; Druschel, S.J.; Netravali, A.N. Shear-strength characteristics of sand-polymer interfaces. J. Geotech. Geoenviron. Eng. 1990, 116, 451–469. [Google Scholar] [CrossRef]
- Dove, J.E.; Frost, J.D. Peak friction behavior of smooth geomembrane-particle interfaces. J. Geotech. Geoenviron. Eng. 1999, 125, 544–555. [Google Scholar] [CrossRef]
- Martinez, A.; Frost, J.D. The influence of surface roughness form on the strength of sand–structure interfaces. Géotech. Lett. 2017, 7, 104–111. [Google Scholar] [CrossRef]
- Hebeler, G.L.; Martinez, A.; Frost, J.D. Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves. KSCE J. Civ. Eng. 2016, 20, 1267–1282. [Google Scholar] [CrossRef]
- Nardelli, A.; Cacciari, P.P.; Futai, M.M. Sand–concrete interface response: The role of surface texture and confinement conditions. Soils Found. 2019, 59, 1675–1694. [Google Scholar] [CrossRef]
- Dejong, J.T.; Westgate, Z.J. Role of initial state, material properties, and confinement condition on local and global soil–structure interface behavior. J. Geotech. Geoenviron. Eng. 2009, 135, 1646–1660. [Google Scholar] [CrossRef]
- Uesugi, M.; Kishida, H. Frictional resistance at yield between dry sand and mild steel. Soils Found. 1986, 26, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Lings, M.L.; Dietz, M.S. The peak strength of sand–steel interfaces and the role of dilation. Soils Found. 2005, 45, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Eshan, G.J.; Salgado, R.; Prezzi, M. Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle. J. Geotech. Geoenviron. Eng. 2018, 144, 04018096. [Google Scholar] [CrossRef]
- Vangla, P.; Gali, M.L. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour. Geotext. Geomembr. 2016, 44, 254–268. [Google Scholar] [CrossRef]
- Frost, J.D.; Dejong, J.T.; Recalde, M. Shear failure behavior of granular–continuum interfaces. Eng. Fract. Mech. 2002, 69, 2029–2048. [Google Scholar] [CrossRef]
- Deng, N.D.; Xue, S.Z.; Duan, D.; Ma, J.Q.; Tang, H. Shear model of interface between medium-fine sand and polymethyl methacrylate. J. Yangtze River Sci. Res. Inst. 2020, 37, 73–78. (In Chinese) [Google Scholar]
- Lee, K.M.; Manjunath, V.R. Soil–geotextile interface friction by direct shear tests. Can. Geotech. J. 2000, 37, 238–252. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhou, J.; Huang, L.Y.; Huang, S.B. Macroscopic and mesoscopic studies of interface interaction on geosynthetics by use of large direct shear tests. Chin. J. Geotech. Eng. 2013, 35, 908–915. (In Chinese) [Google Scholar]
Sand Type | ρmin/(g·cm−3) | ρmax/(g·cm−3) | Cu | Cc | d/mm |
---|---|---|---|---|---|
Fine sand | 1.29 | 1.64 | 1.45 | 1.01 | 0.11 |
Medium sand | 1.41 | 1.69 | 1.51 | 1.03 | 0.41 |
Coarse sand | 1.51 | 1.74 | 2.13 | 1.02 | 0.69 |
Model Pile Type | Pile Length/cm | Pile Diameter/cm | Elastic Modulus/GPa | Poisson’s Ratio/v | Surface Roughness Ra/mm | Surface Hardness HV |
---|---|---|---|---|---|---|
#45 steel pile | 120 | 3 | 209 | 0.27 | 0.0002 | 660 |
Aluminum alloy pile | 125 | 3 | 68.9 | 0.33 | 0.0010 | 350 |
Polymethyl methacrylate pile | 120 | 3 | 9 | 0.17 | 0.0008 | 95 |
Sand Type | Particle Size d/mm | Model Pile | Surface Roughness/mm | Surface Hardness HV |
---|---|---|---|---|
Fine sand | 0.11 | #45 steel pile | 0.0002 | 660 |
Aluminum alloy pile | 0.0010 | 350 | ||
Polymethyl methacrylate pile | 0.0008 | 95 | ||
Medium sand | 0.41 | #45 steel pile | 0.0002 | 660 |
Aluminum alloy pile | 0.0010 | 350 | ||
Polymethyl methacrylate pile | 0.0008 | 95 | ||
Coarse sand | 0.69 | #45 steel pile | 0.0002 | 660 |
Aluminum alloy pile | 0.0010 | 350 | ||
Polymethyl methacrylate pile | 0.0008 | 95 |
Sand Type | Particle Size d/mm | Model Pile | Surface Hardness HV | Peak Interface Friction Coefficient |
---|---|---|---|---|
Fine sand | 0.11 | #45 steel pile | 660 | 0.16 |
Aluminum alloy pile | 350 | 0.22 | ||
Polymethyl methacrylate pile | 95 | 0.45 | ||
Medium sand | 0.41 | #45 steel pile | 660 | 0.17 |
Aluminum alloy pile | 350 | 0.25 | ||
Polymethyl methacrylate pile | 95 | 0.43 | ||
Coarse sand | 0.69 | #45 steel pile | 660 | 0.18 |
Aluminum alloy pile | 350 | 0.27 | ||
Polymethyl methacrylate pile | 95 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Xiao, Z.; Wang, Q. Relationship between Surface Hardness and Peak Interfacial Frictional Coefficient in a Laboratory Scale Setting. Appl. Sci. 2022, 12, 10607. https://doi.org/10.3390/app122010607
Zhao X, Xiao Z, Wang Q. Relationship between Surface Hardness and Peak Interfacial Frictional Coefficient in a Laboratory Scale Setting. Applied Sciences. 2022; 12(20):10607. https://doi.org/10.3390/app122010607
Chicago/Turabian StyleZhao, Xianqiang, Zhaoran Xiao, and Qingshan Wang. 2022. "Relationship between Surface Hardness and Peak Interfacial Frictional Coefficient in a Laboratory Scale Setting" Applied Sciences 12, no. 20: 10607. https://doi.org/10.3390/app122010607
APA StyleZhao, X., Xiao, Z., & Wang, Q. (2022). Relationship between Surface Hardness and Peak Interfacial Frictional Coefficient in a Laboratory Scale Setting. Applied Sciences, 12(20), 10607. https://doi.org/10.3390/app122010607