An Optimized Method for Nonlinear Function Approximation Based on Multiplierless Piecewise Linear Approximation
Abstract
:Featured Application
Abstract
1. Introduction
- Initialize the predefined maximum absolute error (MAEdef), the fractional bit widths of the input (iw) and intermediate data (qw), and the num of ones in slope value (kw);
- Calculate the segments, record the original number of segments, the actual MAE and other information about each segment;
- Take the actual MAE as the maximum error limit (EC_max), take 2−max(iw,qw) as the minimum error limit (EC_min), and take the average of EC_max and EC_min as the new predefined MAE;
- Recalculate the segments, record the number of segments;
- If the number of segments is equal to the original number of segments, then take the new predefined MAE as EC_max and take the average of EC_max and EC_min as the new predefined MAE. Otherwise, take the new predefined MAE as EC_min and take the average of EC_max and EC_min as the new predefined MAE;
- Predefine error iteration number cycle_num, and do cycle_num times of loop iteration, record the final segments, slope, y-intercept and MAE.
- By controlling the slope property of the piecewise approximation function, the multiplexers in the SAA part can be fully used. As a result, fewer segments are required under the same limitation of MAE. Shift-and-add operations can be reduced in some cases as well, and these contribute to less area and delay;
- The proposed MAE adaptation method can reduce the actual MAE as much as possible on the premise of ensuring the predefined MAE and the maximum number of segments, and the percentage of the final MAE to the limit MAE is controllable;
- The tree-cascaded method is used to implement multi-input multiplexers with the nodes of 2-input and 3-input multiplexers in hardware architecture, trying to flatten the delay from input to output. This method is beneficial to reduce the length of critical path;
- The limitations of the method for finding the MAE in advanced segmentation methods has been presented and a corresponding solution is given.
2. State-of-the-Art PWL Method
2.1. Basic Principles of PWL
2.2. ML-PLAC Segmentor and Quantizer
- Predefine MAE, kw, iw, qw and initial i, j as 0 and 1, respectively, for the first segment;
- Use the bisection method to find the segment width that meets the conditions. When the endpoint of a segment is found, the in-segment loop is complete. Then the value of i plus 1, sp and ep are initialized as start and end point indexes for undivided zones to start a new segment. Before each new segment, the left and right pointers of the bisection window coincide with sp and ep, respectively;
- Suppose that the independent variable of ith segment is [x(spi), x(epi)]; ki and bi are slope and y-intercept of the linear function, calculated as:
- 4.
- This step executes according to the value of MAE calculated by Equation (16) and the predefined MAEdef.
- 5.
- Repeat the in-segment and out-segment loops until all inputs are segmented.
3. Proposed Method
3.1. Optimized Segmentation Method
3.2. Error Adaptation
3.3. Hardware Improvement
4. Implementation and Comparison
4.1. Performance Comparison for the Logarithmic Function
Method | No.S | IO.F | NO.M | NO.A | qw | kw | Node (nm) | Fre (GHz) | Area (um2) | Delay (ns) | Power (mW) | Energy (pJ) | MAEdef | MAE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This paper | 14 | 26/26 | 3 | 2 | 14 | 2 | 65 | 0.84 | 691.56 | 1.19 | 0.098 | 0.117 | 1.8 × 10−3 | 1.71 × 10−3 |
ML-PLAC | 17 | 26/26 | 3 | 2 | 14 | 2 | 65 | 0.78 | 783.36 | 1.30 | 0.127 | 0.165 | 1.8 × 10−3 | 1.79 × 10−3 |
+7.69% | −11.72% | −8.46% | −22.83% | −29.09% | - | −4.47% | ||||||||
This paper | 15 | 14/14 | 3 | 2 | 14 | 2 | 65 | 2.22 | 1480.32 | 0.42 | 0.579 | 0.243 | 1.63 × 10−3 | 1.53 × 10−3 |
ML-PLAC | 18 | 14/14 | 3 | 2 | 14 | 2 | 65 | 2.13 | 1690.56 | 0.47 | 1.020 | 0.479 | 1.63 × 10−3 | 1.63 × 10−3 |
+4.23% | −12.44% | −10.64% | −43.24% | −49.27% | - | −6.13% | ||||||||
This paper | 11 | 27/27 | 3 | 2 | 12 | 2 | 90 | 0.78 | 1028.06 | 1.29 | 0.081 | 0.104 | 2.5 × 10−3 | 2.5 × 10−3 |
[15] | 8 | 27/27 | - | 5 | 12 | - | 90 | 0.56 | 8600.68 | 1.77 | 0.66 | 1.168 | 2.5 × 10−3 | 2.5 × 10−3 |
+39.29% | −88.05% | −27.12% | −87.73% | −91.10% | - | 0% | ||||||||
This paper | 12 | 26/26 | 3 | 2 | 13 | 2 | 65 | 1 | 616.68 | 1 | 0.098 | 0.098 | 2.1 × 10−3 | 2.1 × 10−3 |
[24] | 45 | 26/26 | 1 | 1 | 13 | - | 65 | 0.73 | 786.24 | 1.37 | 0.155 | 0.212 | 2.1 × 10−3 | 2.1 × 10−3 |
+36.99% | −21.57% | −27.01% | −36.77% | −53.77% | - | 0% |
4.2. Performance Comparison for the Antilogarithmic Function
Method | No.S | IO.F | NO.M | NO.A | qw | kw | Node (nm) | Fre (GHz) | Area (um2) | Delay (ns) | Power (mW) | Energy (pJ) | MAEdef | MAE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This paper | 18 | 27/27 | 3 | 2 | 14 | 2 | 90 | 0.77 | 1679.33 | 1.30 | 0.124 | 0.161 | 1.29 × 10−3 | 1.25 × 10−3 |
ML-PLAC | 24 | 27/27 | 3 | 2 | 14 | 2 | 90 | 0.74 | 1791.52 | 1.35 | 0.137 | 0.185 | 1.29 × 10−3 | 1.29 × 10−3 |
+4.05% | −6.26% | −3.70% | −9.49% | −12.97% | - | −3.10% | ||||||||
[21] | 8 | 10/10 | - | 3 | 14 | - | 90 | 0.71 | 6098.74 | 1.41 | 0.153 | 0.216 | 1.29 × 10−3 | 1.29 × 10−3 |
+8.45% | −72.46% | −7.8% | −18.95% | −25.46% | - | −3.10% | ||||||||
This paper | 19 | 14/14 | 3 | 2 | 14 | 2 | 90 | 1.67 | 2914.83 | 0.60 | 0.753 | 0.452 | 1.24 × 10−3 | 1.23 × 10−3 |
ML-PLAC | 24 | 14/14 | 3 | 2 | 14 | 2 | 90 | 1.64 | 3317.03 | 0.61 | 0.888 | 0.542 | 1.24 × 10−3 | 1.24 × 10−3 |
+1.83% | −12.13% | −1.64% | −15.20% | −16.61% | - | −0.81% | ||||||||
This paper | 21 | 10/12 | 4 | 3 | 12 | 3 | 90 | 1.29 | 1653.93 | 0.775 | 0.3188 | 0.247 | 4.79 × 10−4 | 4.79 × 10−4 |
ML-PLAC | 36 | 10/12 | 4 | 3 | 12 | 3 | 90 | 1.28 | 1694.85 | 0.78 | 0.397 | 0.310 | 4.79 × 10−4 | 4.79 × 10−4 |
+0.78% | −2.41% | −0.64% | −19.70% | −20.32% | - | 0% |
4.3. Performance Comparison for the Hyperbolic Function
Method | x | No.S | IO.F | NO.M | NO.A | qw | kw | Node (nm) | Fre (GHz) | Area (um2) | Delay (ns) | Power (mW) | Energy (pJ) | MAEdef | MAE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This paper | [0,1) | 24 | 8/8 | 2 | 1 | 8 | 1 | 90 | 1.28 | 498.86 | 0.78 | 0.053 | 0.041 | 3.5 × 10−3 | 3.48 × 10−3 |
ML-PLAC | [0,1) | 24 | 8/8 | 2 | 1 | 8 | 1 | 90 | 1.11 | 524 | 0.90 | 0.0663 | 0.060 | 3.5 × 10−3 | 3.48 × 10−3 |
+6.31% | −4.80% | −13.33% | −20.06% | −31.67% | - | 0% | |||||||||
This paper | [0,1) | 24 | 8/8 | 2 | 1 | 8 | 1 | 40 | 2.04% | 187.51 | 0.49 | 0.0727 | 0.036 | 3.5 × 10−3 | 3.48 × 10−3 |
ML-PLAC | [0,1) | 24 | 8/8 | 2 | 1 | 8 | 1 | 40 | 2 | 215 | 0.50 | 0.0768 | 0.038 | 3.5 × 10−3 | 3.48 × 10−3 |
+2% | −12.79% | −2% | −5.34% | −5.26% | - | 0% | |||||||||
This paper | (−8,8) | 7 | 6/6 | 1 | 1 | 6 | 1 | 65 | 1.11 | 162.36 | 0.9 | 0.011 | 9.9 × 10−3 | 2 × 10−2 | 1.94 × 10−2 |
[9] | (−8,8) | - | 6/6 | - | - | - | - | 65 | 0.59 | 220.41 | 1.69 | - | - | 2 × 10−2 | 2 × 10−2 |
+88.14% | −26.34% | −46.75% | - | - | - | −3% | |||||||||
This paper | (−8,8) | 8 | 8/8 | 2 | 1 | 16 | 1 | 90 | 1.43 | 1198.11 | 0.7 | 0.175 | 0.123 | 1.07 × 10−2 | 1.07 × 10−2 |
[16] | (−8,8) | 12 | 8/8 | - | - | 16 | - | 90 | 1.01 | 2166.19 | 0.99 | 0.717 | 0.710 | - | 1.07 × 10−2 |
+41.58% | −44.69% | −29.29% | −75.5% | −82.68% | - | 0% |
4.4. Performance Comparison for the Hyperbolic Function
Method | x | No.S | IO.F | NO.M | NO.A | qw | kw | Node (nm) | Fre (GHz) | Area (um2) | Delay (ns) | Power (mW) | Energy (pJ) | MAEdef | MAE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This paper | [0,1) | 4 | 8/8 | 1 | 1 | 8 | 1 | 90 | ~1.92 | ~102 | ~0.52 | ~0.019 | ~0.010 | ~5.0 × 10−3 | ~4.93 × 10−3 |
ML-PLAC | [0,1) | 4 | 8/8 | 1 | 1 | 8 | 2 | 90 | |||||||
This paper | (−1,1) | 22 | 13/13 | 4 | 3 | 13 | 3 | 40 | 1.54 | 563.77 | 0.65 | 0.179 | 0.116 | 3.79 × 10−4 | 3.79 × 10−4 |
ML-PLAC | (−1,1) | 29 | 13/13 | 4 | 3 | 13 | 5 | 40 | 1.43 | 614.93 | 0.7 | 0.191 | 0.134 | 3.79 × 10−4 | 3.79 × 10−4 |
+7.69% | −8.32% | −7.14% | −6.28% | −13.43% | - | 0% | |||||||||
This paper | (−8,8) | 4 | 6/6 | 1 | 1 | 6 | 1 | 65 | 1.2 | 119.88 | 0.83 | 0.009 | 0.007 | 2 × 10−2 | 1.89 × 10−2 |
[9] | (−8,8) | - | 6/6 | - | - | - | - | 65 | 0.44 | 126.53 | 2.25 | - | - | 2 × 10−2 | 1.98 × 10−2 |
+172.7% | −5.26% | −63.11% | - | - | - | −4.55% | |||||||||
This paper | (−8,8) | 7 | 8/8 | 2 | 1 | 16 | 1 | 90 | 1.11 | 843.90 | 0.9 | 0.116 | 0.104 | 7.6 × 10−3 | 7.6 × 10−3 |
Scheme I in [17] | (−8,8) | 12 | 8/8 | - | - | 16 | - | 90 | 1 | 1684.27 | 0.98 | 0.520 | 0.510 | - | 1.14 × 10−2 |
+11% | −49.90% | −8.16% | −77.69% | −79.61% | - | −33.33% | |||||||||
Scheme II in [17] | (−8,8) | 12 | 8/8 | - | - | 16 | - | 90 | 1 | 2024.37 | 0.98 | 0.667 | 0.654 | - | 7.6 × 10−3 |
+11% | −58.31% | −8.16% | −82.61% | −84.10% | - | 0% |
4.5. Performance Comparison for the Softsign Function
Method | No.S | IO.F | NO.M | NO.A | qw | kw | Node (nm) | Fre (GHz) | Area (um2) | Delay (ns) | Power (mW) | Energy (pJ) | MAEdef | MAE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This paper | a | 20 | 12/12 | 3 | 2 | 10 | 2 | 40 | 1 | 382.08 | 1 | 0.0653 | 0.065 | 3.91 × 10−3 | 3.91 × 10−3 |
b | 10 | 12/12 | 3 | 2 | 10 | 2 | 40 | 1.11 | 244.67 | 0.9 | 0.0443 | 0.040 | 3.91 × 10−3 | 3.91 × 10−3 | |
ML-PLAC | 42 | 12/12 | 4 | 3 | 10 | 4 | 40 | 0.83 | 600 | 1.2 | 0.0741 | 0.089 | 3.91 × 10−3 | 3.91 × 10−3 | |
Compared to a | +20.48% | −36.32% | −16.67% | −11.88% | −26.97% | - | 0% | ||||||||
Compared to b | +33.73% | −59.22% | −25% | −40.22% | −55.06% | - | 0% | ||||||||
[30] | 32 | 12/12 | 2 | 1 | 10 | - | 40 | 0.50 | 1354 | 2 | 0.2152 | 0.430 | - | 5.86 × 10−3 | |
Compared to a | +100% | −71.78% | −50% | −69.66% | −84.88% | −33.28% | |||||||||
Compared to b | +122% | −81.93% | −55% | −79.41% | −90.70% | −33.28% |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Lombardi, F.; Shulte, M. A retrospective and prospective view of approximate computing. Proc. IEEE 2020, 108, 394–399. [Google Scholar] [CrossRef]
- Seth, A.; Gan, W.-S. Fixed-point square roots using L-b truncation. IEEE Signal Process. Mag. 2011, 28, 149–153. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Y.; Ha, Y.; Wang, Z.; Chen, S.; Pan, H. Generalized hyperbolic CORDIC and its logarithmic and exponential computation with arbitrary fixed base. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2156–2169. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Wang, Z.; Shen, Q.; Pan, H. GH CORDIC-Based Architecture for Computing Nth Root of Single-Precision Floating-Point Number. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 864–875. [Google Scholar] [CrossRef]
- Montuschi, P.; Bruguera, J.D.; Ciminiera, L.; Piñeiro, J.-A. A digit-by-digit algorithm for mth root extraction. IEEE Trans. Comput. 2007, 56, 1696–1706. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, J.; Wang, Z. Accelerating recurrent neural networks: A memory-efficient approach. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2017, 25, 2763–2775. [Google Scholar] [CrossRef]
- Nilsson, P.; Shaik, A.U.R.; Gangarajaiah, R.; Hertz, E. Hardware implementation of the exponential function using Taylor series. In Proceedings of the 2014 NORCHIP, Tampere, Finland, 27–28 October 2014; pp. 1–4. [Google Scholar]
- Sybis, M. Log-MAP equivalent Chebyshev inequality based algorithm for turbo TCM decoding. Electron. Lett. 2011, 47, 1049–1050. [Google Scholar] [CrossRef]
- Chong, Y.S.; Goh, W.L.; Ong, Y.S.; Nambiar, V.P.; Do, A.T. Efficient Implementation of Activation Functions for LSTM accelerators. In Proceedings of the 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC), Singapore, 4–7 October 2021; pp. 1–5. [Google Scholar]
- Chinta, C.; Deshmukh, R.B. High speed most significant bit first truncated multiplier. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–4. [Google Scholar]
- Chandrashekara, M.; Rohith, S. Design of 8 bit Vedic multiplier using Urdhva Tiryagbhyam sutra with modified carry save adder. In Proceedings of the 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 17–18 May 2019; pp. 116–120. [Google Scholar]
- Pilipović, R.; Bulić, P. On the design of logarithmic multiplier using radix-4 booth encoding. IEEE Access 2020, 8, 64578–64590. [Google Scholar] [CrossRef]
- De Caro, D.; Petra, N.; Strollo, A.G. Efficient logarithmic converters for digital signal processing applications. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 667–671. [Google Scholar] [CrossRef]
- Gutierrez, R.; Valls, J. Low cost hardware implementation of logarithm approximation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2010, 19, 2326–2330. [Google Scholar] [CrossRef]
- Ellaithy, D.M.; El-Moursy, M.A.; Ibrahim, G.H.; Zaki, A.; Zekry, A. Accurate Piecewise Uniform Approximation Logarithmic/Antilogarithmic Converters for GPU Applications. In Proceedings of the 2017 29th International Conference on Microelectronics (ICM), Beirut, Lebanon, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Qin, Z. Optimizations and Implementations for Key Components of Deep Neural Networks; Nanjing University: Nanjing, China, 2020. [Google Scholar]
- Qin, Z.; Qiu, Y.; Sun, H.; Lu, Z.; Shen, Q.; Wang, Z.; Pan, H. A Novel Approximation Methodology and Its Efficient VLSI Implementation for the Sigmoid Function. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3422–3426. [Google Scholar] [CrossRef]
- Kim, H.; Nam, B.-G.; Sohn, J.-H.; Woo, J.-H.; Yoo, H.-J. A 231-MHz, 2.18-mW 32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system. IEEE J. Solid-State Circuits 2006, 41, 2373–2381. [Google Scholar] [CrossRef] [Green Version]
- Nam, B.-G.; Yoo, H.-J. An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC. IEEE J. Solid-State Circuits 2009, 44, 1554–1570. [Google Scholar] [CrossRef]
- Ellaithy, D.M.; El-Moursy, M.A.; Ibrahim, G.H.; Zaki, A.; Zekry, A. Double logarithmic arithmetic technique for low-power 3-D graphics applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2017, 25, 2144–2152. [Google Scholar] [CrossRef]
- Ellaithy, D.M.; El-Moursy, M.A.; Ibrahim, G.H.; Zaki, A.; Zekry, A. Efficient Piecewise Non-Uniform Approximation Logarithmic and Antilogarithmic Converters. In Proceedings of the 2017 International Conference on Advanced Control Circuits Systems (ACCS) Systems & 2017 International Conference on New Paradigms in Electronics & Information Technology (PEIT), Alexandria, Egypt, 5–8 November 2017; pp. 149–152. [Google Scholar]
- Zhu, M.; Ha, Y.; Gu, C.; Gao, L. An optimized logarithmic converter with equal distribution of relative errors. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 848–852. [Google Scholar] [CrossRef]
- Liu, C.-W.; Ou, S.-H.; Chang, K.-C.; Lin, T.-C.; Chen, S.-K. A low-error, cost-efficient design procedure for evaluating logarithms to be used in a logarithmic arithmetic processor. IEEE Trans. Comput. 2015, 65, 1158–1164. [Google Scholar] [CrossRef]
- Loukrakpam, M.; Choudhury, M. Error-aware design procedure to implement hardware-efficient logarithmic circuits. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 851–855. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Y.; Ha, Y.; Shi, Y.; Gao, Y.; Shen, Q.; Pan, H. A universal method of linear approximation with controllable error for the efficient implementation of transcendental functions. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 67, 177–188. [Google Scholar] [CrossRef]
- Dong, H.; Wang, M.; Luo, Y.; Zheng, M.; An, M.; Ha, Y.; Pan, H. PLAC: Piecewise linear approximation computation for all nonlinear unary functions. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2020, 28, 2014–2027. [Google Scholar] [CrossRef]
- Lyu, F.; Xu, X.; Wang, Y.; Luo, Y.; Wang, Y.; Pan, H. Ultralow-latency VLSI architecture based on a linear approximation method for computing Nth roots of floating-point numbers. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 715–727. [Google Scholar] [CrossRef]
- Lyu, F.; Mao, Z.; Zhang, J.; Wang, Y.; Luo, Y. PWL-based architecture for the logarithmic computation of floating-point numbers. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 1470–1474. [Google Scholar] [CrossRef]
- Lyu, F.; Xia, Y.; Mao, Z.; Wang, Y.; Wang, Y.; Luo, Y. ML-PLAC: Multiplierless Piecewise Linear Approximation for Nonlinear Function Evaluation. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 1546–1559. [Google Scholar] [CrossRef]
- Chang, C.-H.; Zhang, E.-H.; Huang, S.-H. Softsign Function Hardware Implementation Using Piecewise Linear Approximation. In Proceedings of the 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Taipei, Taiwan, 3–6 December 2019; pp. 1–2. [Google Scholar]
PWL Methods | Segmentation Criteria | Optimizations | Features |
---|---|---|---|
uniform segmentation | Same segment widths. | Optimize according to the properties of specific functions; Error modification. | Good performance for specific functions; Different errors for different segments; More segments with the increase in accuracy. |
non-uniform segmentation (not error-flattened) | MRE; Control the number of segments according to the rate of change in the function; No fixed standard. | Optimize according to the properties of specific functions and segment points. | Good performance for specific functions; Poor hardware efficiency. |
error flattening segmentation | MAE. | Software segmentation method optimization; Hardware structure optimization. | Good performance for general nonlinear functions; Fewer segments; Hardware efficient. |
1 | ||
2 | %Quantification operation of in ML-PLAC | |
3 | ||
4 | ||
5.1 | %Simulation of SAA operations in ML-PLAC to replace the multiplier and the truncation of multiplier output. | |
5.2 | ||
5.3 | ||
5.4 | ||
5.5 | ||
5.6 | ||
5_1 | %Getting the new fractional bit widths of the slope according to the number of ones in the slope kw in OML-PLAC. When is negative, the magnitude represents the position of the least significant “1” in the integer part of the slope. | |
5_2 | ||
5_3 | ||
5_4 | ||
5_5 | ||
5_6 | ||
5_7 | ||
5_8 | ||
5_9 | %Quantification operation of in OML-PLAC. | |
5_10 | %Simulation the process of SAA in OML-PLAC to replace the multiplier and the truncation of multiplier output. | |
5_11 | ||
5_12 | ||
5_13 | ||
5_14 | ||
5_15 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 |
Function | Input Range | iw | MAEdef | Segmentation Method | NO. of Segments | kw | qw | MAE | MAEEA Cycle_Num = 7 |
---|---|---|---|---|---|---|---|---|---|
log2(1 + x) | [0,1) | 16 | 2.31 × 10−4 | ML_PLAC | 31 | 4 | 16 | 2.31 × 10−4 | - |
OML_PLAC | 19 | 4 | 16 | 2.31 × 10−4 | 2.16 × 10−4 | ||||
tanh(x) | [0,1) | 8 | 5.72 × 10−3 | ML_PLAC | 22 | 0 | 8 | 5.71 × 10−3 | - |
OML_PLAC | 12 | 1 | 8 | 5.57 × 10−3 | 4.67 × 10−3 | ||||
sigmoid(x) | [0,1) | 8 | 6.54 × 10−3 | ML_PLAC | 20 | 0 | 8 | 6.39 × 10−3 | - |
OML_PLAC | 3 | 1 | 8 | 6.51 × 10−3 | 5.21 × 10−3 | ||||
softsign(x) | (−8,8) | 12 | 5.00 × 10−3 | ML_PLAC | 29 | 3 | 10 | 5.00 × 10−3 | - |
OML_PLAC | 16 | 3 | 10 | 4.99 × 10−3 | 4.99 × 10−3 |
1 | 2 | 3 | 4 | 5 | 6 | |
0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |
dcp (a) | −1,−2 | −1,−2 | −1,−2 | −1,−2 | −1,−2 | −1,−2 |
134,064,676 | 133,945,844 | 134,266,135 | 134,585,698 | 134,907,266 | 135,227,824 | |
0 | 7,405,568 | 27,982,355 | 33,160,625 | 37,123,176 | 40,433,978 | |
7,405,567 | 27,982,354 | 33,160,624 | 37,123,175 | 40,433,977 | 43,348,127 | |
7 | 8 | 9 | 10 | 11 | 12 | |
0.75 | 1 | 1 | 1 | 1 | 1.0078125 | |
dcp (a) | −1,−2 | 0 | 0 | 0 | 0 | 0,−7 |
135,550,313 | 124,052,312 | 123,723,825 | 123,395,314 | 123,066,929 | 122,272,854 | |
43,348,128 | 45,969,761 | 48,832,512 | 52,101,120 | 56,033,280 | 61,382,656 | |
45,969,760 | 48,832,511 | 52,101,119 | 56,033,279 | 61,382,655 | 83,500,828 | |
13 | 14 | 15 | 16 | 17 | 18 | |
1.125 | 1.25 | 1.25 | 1.25 | 1.25 | 1.5 | |
dcp (a) | 0,−3 | 0,−2 | 0,−2 | 0,−2 | 0,−2 | 0,−1 |
112,508,522 | 99,488,945 | 99,809,534 | 100,128,867 | 100,448,749 | 67,144,445 | |
83,500,829 | 104,193,313 | 124,058,498 | 128,089,921 | 131,169,714 | 133,757,944 | |
104,193,312 | 124,058,497 | 128,089,920 | 131,169,713 | 133,757,943 | 134,217,727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yuan, G.; Kong, D.; Lei, L.; He, Y. An Optimized Method for Nonlinear Function Approximation Based on Multiplierless Piecewise Linear Approximation. Appl. Sci. 2022, 12, 10616. https://doi.org/10.3390/app122010616
Yu H, Yuan G, Kong D, Lei L, He Y. An Optimized Method for Nonlinear Function Approximation Based on Multiplierless Piecewise Linear Approximation. Applied Sciences. 2022; 12(20):10616. https://doi.org/10.3390/app122010616
Chicago/Turabian StyleYu, Hongjiang, Guoshun Yuan, Dewei Kong, Lei Lei, and Yuefeng He. 2022. "An Optimized Method for Nonlinear Function Approximation Based on Multiplierless Piecewise Linear Approximation" Applied Sciences 12, no. 20: 10616. https://doi.org/10.3390/app122010616
APA StyleYu, H., Yuan, G., Kong, D., Lei, L., & He, Y. (2022). An Optimized Method for Nonlinear Function Approximation Based on Multiplierless Piecewise Linear Approximation. Applied Sciences, 12(20), 10616. https://doi.org/10.3390/app122010616