High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network
Abstract
:1. Introduction
2. Principle
3. Method
4. Simulation
5. Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Fan, Y.; Li, J.; Lu, L.; Sun, J.; Hu, Y.; Zhang, J.; Li, Z.; Shen, Q.; Wang, B.; Zhang, R.; et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX 2021, 2, 1–64. [Google Scholar] [CrossRef]
- Vicar, T.; Balvan, J.; Jaros, J.; Jug, F.; Kolar, R.; Masarik, M.; Gumulec, J. Cell segmentation methods for label-free contrast microscopy: Review and comprehensive comparison. BMC Bioinform. 2019, 20, 1–25. [Google Scholar] [CrossRef]
- Gao, P.; Wirth, R.; Lackner, J.; Sunbul, M.; Jaeschke, A.; Nienhaus, G.U. Superresolution Imaging of Live Cells with Genetically Encoded Silicon Rhodamine-Binding RNA Aptamers. Biophys. J. 2020, 118, 145a. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Sun, J.; Zuo, C.; Chen, Q. A commercialized digital holographic microscope with complete software supporting. In Proceedings of the Optics Frontier Online 2020: Optics Imaging and Display, SPIE, Shanghai, China, 19–20 June 2020; Volume 11571, pp. 341–347. [Google Scholar]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef] [Green Version]
- Kemper, B.; Von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 2008, 47, A52–A61. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Yuan, C. Resolution enhancement of digital holographic microscopy via synthetic aperture: A review. Light. Adv. Manuf. 2022, 3, 105–120. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, J.; Yao, B.; Pedrini, G.; Osten, W. Autofocusing and resolution enhancement in speckle-illuminated digital holographic microscopy. In Proceedings of the Digital Holography and Three-Dimensional Imaging, Optica Publishing Group, Shanghai, China, 24–28 May 2015; p. DT3A–2. [Google Scholar]
- Carl, D.; Kemper, B.; Wernicke, G.; von Bally, G. Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 2004, 43, 6536–6544. [Google Scholar] [CrossRef]
- Gabai, H.; Baranes-Zeevi, M.; Zilberman, M.; Shaked, N.T. Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry. Opt. Lett. 2013, 38, 3017–3020. [Google Scholar] [CrossRef]
- Coppola, G.; Ferraro, P.; Iodice, M.; De Nicola, S.; Finizio, A.; Grilli, S. A digital holographic microscope for complete characterization of microelectromechanical systems. Meas. Sci. Technol. 2004, 15, 529. [Google Scholar] [CrossRef]
- Huang, Z.; Memmolo, P.; Ferraro, P.; Cao, L. Dual-plane coupled phase retrieval for non-prior holographic imaging. PhotoniX 2022, 3, 1–16. [Google Scholar] [CrossRef]
- Wu, X.; Sun, J.; Zhang, J.; Lu, L.; Chen, R.; Chen, Q.; Zuo, C. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging. Opt. Lett. 2021, 46, 2023–2026. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.C. Digital Holography and Three-Dimensional Display: Principles and Applications; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Poon, T.C.; Liu, J.P. Introduction to Modern Digital Holography: With MATLAB; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zhong, Z.; Bai, H.; Shan, M.; Zhang, Y.; Guo, L. Fast phase retrieval in slightly off-axis digital holography. Opt. Lasers Eng. 2017, 97, 9–18. [Google Scholar] [CrossRef]
- Xue, L.; Lai, J.; Wang, S.; Li, Z. Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells. Biomed. Opt. Express 2011, 2, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Cao, L. High Bandwidth-Utilization Digital Holographic Multiplexing: An Approach Using Kramers–Kronig Relations. Adv. Photonics Res. 2022, 3, 2100273. [Google Scholar] [CrossRef]
- Pavillon, N.; Seelamantula, C.S.; Kühn, J.; Unser, M.; Depeursinge, C. Suppression of the zero-order term in off-axis digital holography through nonlinear filtering. Appl. Opt. 2009, 48, H186–H195. [Google Scholar] [CrossRef] [Green Version]
- Baek, Y.; Lee, K.; Shin, S.; Park, Y. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica 2019, 6, 45–51. [Google Scholar] [CrossRef]
- Baek, Y.; Park, Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics 2021, 15, 354–360. [Google Scholar] [CrossRef]
- Trusiak, M.; Cywińska, M.; Micó, V.; Picazo-Bueno, J.Á.; Zuo, C.; Zdańkowski, P.; Patorski, K. Variational Hilbert quantitative phase imaging. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Shen, Q.; Sun, J.; Fan, Y.; Li, Z.; Gao, P.; Chen, Q.; Zuo, C. High-throughput artifact-free slightly off-axis holographic imaging based on Fourier ptychographic reconstruction. Front. Photonics 2022, 3, 936561. [Google Scholar] [CrossRef]
- Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light. Sci. Appl. 2022, 11, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Waller, L.; Tian, L. Machine learning for 3D microscopy. Nature 2015, 523, 416–417. [Google Scholar] [CrossRef] [Green Version]
- Rivenson, Y.; Wu, Y.; Ozcan, A. Deep learning in holography and coherent imaging. Light. Sci. Appl. 2019, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Chen, Q.; Gu, G.; Tao, T.; Zhang, L.; Hu, Y.; Zuo, C. Fringe pattern analysis using deep learning. Adv. Photonics 2019, 1, 025001. [Google Scholar] [CrossRef] [Green Version]
- Rivenson, Y.; Zhang, Y.; Günaydın, H.; Teng, D.; Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light. Sci. Appl. 2018, 7, 17141. [Google Scholar] [CrossRef] [Green Version]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9446–9454. [Google Scholar]
- Wang, F.; Bian, Y.; Wang, H.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase imaging with an untrained neural network. Light. Sci. Appl. 2020, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, X.; Chi, Z.; Mann, C.; Razi, A. Deep DIH: Single-shot digital in-line holography reconstruction by deep learning. IEEE Access 2020, 8, 202648–202659. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Li, J.; Si, C.; Li, Y.; Li, X. An improve convolutional auto-encode denoising method. In Proceedings of the 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, Online, 18–21 October 2021; Volume 2021, pp. 1–5. [Google Scholar]
- Zuo, C.; Chen, Q.; Qu, W.; Asundi, A. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Opt. Lett. 2013, 38, 1724–1726. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Q.; Zhang, Y.; Zuo, C. Optimal principal component analysis-based numerical phase aberration compensation method for digital holography. Opt. Lett. 2016, 41, 1293–1296. [Google Scholar] [CrossRef]
- Herráez, M.A.; Burton, D.R.; Lalor, M.J.; Gdeisat, M.A. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 2002, 41, 7437–7444. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the Icml, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Rivenson, Y.; Wu, Y.; Wang, H.; Zhang, Y.; Feizi, A.; Ozcan, A. Sparsity-based multi-height phase recovery in holographic microscopy. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Cywińska, M.; Trusiak, M.; Patorski, K. Automatized fringe pattern preprocessing using unsupervised variational image decomposition. Opt. Express 2019, 27, 22542–22562. [Google Scholar] [CrossRef]
- León-Rodríguez, M.; Rayas, J.A.; Cordero, R.R.; Martínez-García, A.; Martínez-Gonzalez, A.; Téllez-Quiñones, A.; Yañez-Contreras, P.; Medina-Cázares, O. Dual-plane slightly off-axis digital holography based on a single cube beam splitter. Appl. Opt. 2018, 57, 2727–2735. [Google Scholar] [CrossRef]
- Han, J.; Gao, P.; Yao, B.; Gu, Y.; Huang, M. Slightly off-axis interferometry for microscopy with second wavelength assistance. Appl. Opt. 2011, 50, 2793–2798. [Google Scholar] [CrossRef]
- Trusiak, M.; Picazo-Bueno, J.A.; Patorski, K.; Zdankowski, P.; Mico, V. Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy. J. Biomed. Opt. 2019, 24, 096004. [Google Scholar] [CrossRef]
- Choi, W.; Fang-Yen, C.; Badizadegan, K.; Oh, S.; Lue, N.; Dasari, R.R.; Feld, M.S. Tomographic phase microscopy. Nat. Methods 2007, 4, 717–719. [Google Scholar] [CrossRef]
- Sung, Y.; Choi, W.; Fang-Yen, C.; Badizadegan, K.; Dasari, R.R.; Feld, M.S. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 2009, 17, 266–277. [Google Scholar] [CrossRef]
- Li, J.; Matlock, A.C.; Li, Y.; Chen, Q.; Zuo, C.; Tian, L. High-speed in vitro intensity diffraction tomography. Adv. Photonics 2019, 1, 066004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, S.; Ma, C.; Xi, T.; Di, J.; Zhao, J. A review of common-path off-axis digital holography: Towards high stable optical instrument manufacturing. Light. Adv. Manuf. 2021, 2, 333–349. [Google Scholar] [CrossRef]
- Mico, V.; Zalevsky, Z.; Garcia, J. Superresolution optical system by common-path interferometry. Opt. Express 2006, 14, 5168–5177. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, Y.; Sun, J.; Jin, Y.; Shen, Q.; Gao, P.; Chen, Q.; Zuo, C. High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network. Appl. Sci. 2022, 12, 10656. https://doi.org/10.3390/app122010656
Li Z, Chen Y, Sun J, Jin Y, Shen Q, Gao P, Chen Q, Zuo C. High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network. Applied Sciences. 2022; 12(20):10656. https://doi.org/10.3390/app122010656
Chicago/Turabian StyleLi, Zhuoshi, Yuanyuan Chen, Jiasong Sun, Yanbo Jin, Qian Shen, Peng Gao, Qian Chen, and Chao Zuo. 2022. "High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network" Applied Sciences 12, no. 20: 10656. https://doi.org/10.3390/app122010656
APA StyleLi, Z., Chen, Y., Sun, J., Jin, Y., Shen, Q., Gao, P., Chen, Q., & Zuo, C. (2022). High Bandwidth-Utilization Digital Holographic Reconstruction Using an Untrained Neural Network. Applied Sciences, 12(20), 10656. https://doi.org/10.3390/app122010656