Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Isotope Measurements
2.2.1. δ13C Determinations from Honey and Its Corresponding Proteins
Samples Preparation
2.2.2. δ18O and δ2H Determinations from Honey Water
Water Extraction from Honey
2.3. Elemental Profile Determinations
2.3.1. Sample Digestion for Elemental Profile Determinations
2.3.2. ICP-MS Measurements
2.4. Data Processing
2.4.1. Machine Learning Models
2.4.2. Data Dimensionality Reduction
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guyon, F.; Logodin, E.; Magdas, D.A.; Gaillard, L. Potential of FTIR-ATR diamond in discriminating geographical and botanical origins of honeys from France and Romania. Talanta Open 2021, 3, 100022. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef]
- Cristea, G.; Voica, C.; Feher, I.; Puscas, R.; Magdas, D.A. Isotopic and elemental characterization of Romanian pork meat in corroboration with advanced chemometric methods: A first exploratory study. Meat Sci. 2022, 189, 108825. [Google Scholar] [CrossRef]
- Magdas, D.A.; Feher, I.; Dehelean, A.; Cristea, G.; Magdas, T.M.; Puscas, R.; Marincaş, O. Isotopic and elemental markers for geographical origin and organically grown carrots discrimination. Food Chem. 2018, 267, 231–239. [Google Scholar] [CrossRef]
- Magdas, D.A.; Feher, I.; Cristea, G.; Voica, C.; Tabaran, A.; Mihaiu, M.; Cordea, D.V.; Balteanu, A.; Dan, S.D. Geographical origin and species differentiation of Transylvanian cheese. Comparative study of isotopic and elemental profiling vs. DNA results. Food Chem. 2019, 277, 307–313. [Google Scholar] [CrossRef]
- Madejczyk, M.; Baralkiewicz, D. Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Anal. Chim. Acta 2008, 617, 11–17. [Google Scholar] [CrossRef]
- Salomon, S.; Jenne, V.; Hoenig, M. Practical aspects of routine trace element environmental analysis by inductively coupled plasma-mass spectrometry. Talanta 2002, 57, 157–168. [Google Scholar] [CrossRef]
- Santos, J.S.; Santos, N.S.; Santos, M.L.P.; Santos, S.N.; Lacerda, J.J.J. Honey classification from semi-arid, Atlantic and transitional forest zones in Bahia, Brazil. J. Brazil. Soc. 2008, 19, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Tuzen, M.; Soylak, M. Trace heavy metal levels in microwave digested honey samples from Middle Anatolia, Turkey. J. Food Drug Anal. 2005, 13, 343–347. [Google Scholar] [CrossRef]
- Chudzinska, M.; Baralkiewics, D. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food Chem. Toxicol. 2011, 49, 2741–2749. [Google Scholar] [CrossRef]
- European Commission. Council directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, L 010, 47–52. [Google Scholar]
- Zhang, G.; Abdulla, W. On honey authentication and adulterant detection techniques. Food Control 2022, 138, 108992. [Google Scholar] [CrossRef]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of Italian honey. Measurement 2017, 98, 283–289. [Google Scholar] [CrossRef]
- Cengiz, M.M.; Tosun, M.; Topal, M. Determination of the physicochemical properties and 13C/12C isotope ratios of some honeys from the northeast Anatolia region of Turkey. J. Food Compos. Anal. 2018, 69, 39–44. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Puscas, R.; Vigouroux, A.; Gaillard, L.; Dehelean, A.; Feher, I.; Cristea, G. Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem. 2021, 334, 127599. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci. Rep. 2018, 8, 14639. [Google Scholar] [CrossRef] [Green Version]
- Hategan, A.R.; Puscas, R.; Cristea, G.; Dehelean, A.; Guyon, F.; Molnar, A.J.; Mirel, V.; Magdas, D.A. Opportunities and Constraints in Applying Artificial Neural Networks (ANNs) in Food Authentication. Honey—A Case Study. Appl. Sci. 2021, 11, 6723. [Google Scholar] [CrossRef]
- Magdas, D.A.; David, M.; Berghian-Grosan, C. Fruit spirits fingerprint pointed out through artificial intelligence and FT-Raman spectroscopy. Food Control 2022, 133, 108630. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Berghian-Grosan, C.; Molnar, C.M. Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control 2021, 123, 107769. [Google Scholar] [CrossRef]
- Berghian-Grosan, C.; Magdas, D.A. Application of Raman spectroscopy and Machine Learning algorithms for fruit distillates discrimination. Sci. Rep. 2020, 10, 21152. [Google Scholar] [CrossRef] [PubMed]
- Feher, I.; Magdas, D.A.; Voica, C.; Cristea, G.; Sârbu, C. Fuzzy divisive hierarchical associative-clustering applied to different varieties of white wines according to their multi-elemental profiles. Molecules 2020, 25, 4955. [Google Scholar] [CrossRef] [PubMed]
- Berghian-Grosan, C.; Magdas, D.A. Raman spectroscopy and machine-learning for edible oils evaluation. Talanta 2020, 218, 121176. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Cevoli, C.; Fabbri, A.; Caboni, M.F.; Losi, G. A rapid method to discriminate season of production and feeding regimen of butters based on infrared spectroscopy and artificial neural networks. J. Food Eng. 2012, 109, 525–530. [Google Scholar] [CrossRef]
- Brand, W.A.; Coplen, T.B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of international reference materials for stable isotope ratio analysis 2013 (IUPAC). Pure Appl. Chem. 2012, 86, 425–467. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Norvig, P. Artificial Intelligence—A Modern Approach; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 1 May 2022).
- Fletcher, T. Support Vector Machines Explained. Tutorial Thesis, University College, London, UK, 2008. [Google Scholar]
- Mitchell, T. Machine Learning; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Eigenvector Research, Inc. Eigenvector Research Wiki. Available online: https://wiki.eigenvector.com/index.php?title=Selectvars (accessed on 10 June 2022).
- Hategan, A.R.; Guyon, F.; Magdas, D.A. The improvement of honey recognition models built on 1H NMR fingerprint through a new proposed approach for feature selection. J. Food Compos. Anal. 2022, 114, 104786. [Google Scholar] [CrossRef]
- Hategan, A.R.; David, M.; Dehelean, A.; Cristea, G.; Puscas, R.; Molnar, A.J.; Magdas, D.A. Impact of Pre-Processing Methods for the Identification of the Botanical Origin of Honey Based Upon Isotopic and Elemental Profiles. Anal. Lett. 2022, 98, 2044347. [Google Scholar] [CrossRef]
Input Space (Number of Attributes) | Machine Learning Classifier | True Positive Rate (Cross-Validation) | Accuracy (Cross-Validation) | |
---|---|---|---|---|
Transylvania (60) | Other (36) | |||
Entire set of isotopic and elemental determinations (54) | ANN | 0.85 | 0.55 | 0.73 |
SVM | 0.98 | 0.36 | 0.75 | |
KNN | 0.83 | 0.58 | 0.73 | |
PCA scores (10) | ANN | 0.80 | 0.69 | 0.76 |
SVM | 0.90 | 0.44 | 0.72 | |
KNN | 0.95 | 0.30 | 0.70 | |
Features selected based on PLS (19) | ANN | 0.93 | 0.72 | 0.85 |
SVM | 0.91 | 0.72 | 0.84 | |
KNN | 0.93 | 0.44 | 0.75 |
Input Space (Number of Attributes) | Machine Learning Classifier | True Positive Rate (Cross-Validation) | Accuracy (Cross-Validation) | |
---|---|---|---|---|
Romania (117) | Other (19) | |||
Entire set of isotopic and elemental determinations (54) | ANN | 0.98 | 0.47 | 0.91 |
SVM | 0.97 | 0.57 | 0.91 | |
KNN | 0.98 | 0.26 | 0.88 | |
PCA scores (10) | ANN | 0.95 | 0.57 | 0.89 |
SVM | 1.00 | 0.21 | 0.88 | |
KNN | 0.99 | 0.15 | 0.87 | |
Features selected based on PLS (9) | ANN | 0.99 | 0.73 | 0.95 |
SVM | 0.99 | 0.57 | 0.93 | |
KNN | 0.98 | 0.57 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hategan, A.R.; Magdas, D.A.; Puscas, R.; Dehelean, A.; Cristea, G.; Simionescu, B. Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment. Appl. Sci. 2022, 12, 10894. https://doi.org/10.3390/app122110894
Hategan AR, Magdas DA, Puscas R, Dehelean A, Cristea G, Simionescu B. Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment. Applied Sciences. 2022; 12(21):10894. https://doi.org/10.3390/app122110894
Chicago/Turabian StyleHategan, Ariana Raluca, Dana Alina Magdas, Romulus Puscas, Adriana Dehelean, Gabriela Cristea, and Bianca Simionescu. 2022. "Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment" Applied Sciences 12, no. 21: 10894. https://doi.org/10.3390/app122110894
APA StyleHategan, A. R., Magdas, D. A., Puscas, R., Dehelean, A., Cristea, G., & Simionescu, B. (2022). Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile—An Efficient Tool for Honey Geographical Origin Assessment. Applied Sciences, 12(21), 10894. https://doi.org/10.3390/app122110894