Effect of an Individualised Training Programme on Hamstrings and Change Direction Based on Tensiomyography in Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design and Procedure
2.3. Tensiomyography Assessment
2.4. Change of Direction Assessment
2.5. Statistical Analysis
3. Results
3.1. TMG Parameters
3.1.1. Right Leg
3.1.2. Left Leg
3.2. Change of Direction Test
3.2.1. Right Side
3.2.2. Left Side
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dellal, A.; Chamari, K.; Wong, D.P.; Ahmaidi, S.; Keller, D.; Barros, R.; Bisciotti, G.N.; Carling, C. Comparison of physical and technical performance in European soccer match-play: Fa Premier League and La Liga. Eur. J. Sport Sci. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Carling, C. Analysis of physical activity profiles when running with the ball in a professional soccer team. J. Sports Sci. 2010, 28, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Espen, T.; Hisdal, J.; Seiler, S. The role and development of sprinting speed in soccer. Int J. Sports Physiol. Perform. 2013, 9, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos’santos, T.; Thomas, C.; McBurnie, A.; Comfort, P.; Jones, P.A. Change of direction speed and technique modification training improves 180° turning performance, kinetics, and kinematics. Sports 2021, 9, 73. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar]
- Jones, P.; Bampouras, T.M.; Marrin, K. An investigation into the physical determinants of change of direction speed. J. Sports Med. Phys. Fit. 2009, 49, 97–104. [Google Scholar]
- Faude, O.; Rössler, R.; Petushek, E.J.; Roth, R.; Zahner, L.; Donath, L. Neuromuscular adaptations to multimodal injury prevention programs in youth sports: A systematic review with meta-analysis of randomized controlled trials. Front Physiol. 2017, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lehr, M.E.; Kime, D.; Onks, C.; Silvis, M.; Streisel, M. Development of a preliminary evidence-based neuromusculoskeletal exercise guideline to reduce injury risk in the lower limb. Phys. Ther. Sport 2017, 25, 76–83. [Google Scholar] [CrossRef]
- Read, P.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Assessment of injury risk factors in male youth soccer players. Strength Cond. J. 2016, 38, 12–21. [Google Scholar] [CrossRef]
- Lehance, C.; Binet, J.; Bury, T.; Croisier, J.L. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand. J. Med. Sci. Sport 2009, 19, 243–251. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Susceptibility to hamstring injuries in soccer: A prospective study using muscle functional magnetic resonance imaging. Am. J. Sports Med. 2016, 44, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Junge, N.; Morin, J.B.; Nybo, L. Leg extension force-velocity imbalance has negative impact on sprint performance in ballgame players. Sport Biomech. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; Ste Croix MDe Myer, G.D.; Lloyd, R.S. A review of field-based assessments of neuromuscular control and their utility in male youth soccer players. J. Strength Cond. Res. 2019, 33, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Valencic, V.; Djodjevic, S. Influence of acute physical exercise on twitch response elicited by stimulation of skeletal muscles in man. Biomech. Eng. 2001, 2, 1–4. [Google Scholar]
- Macgregor, L.J.; Hunter, A.M.; Orizio, C.; Fairweather, M.M.; Ditroilo, M. Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. Sport Med. 2018, 48, 1607–1620. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.N.; Stewart, P.F. Strength and conditioning for soccer players. Strength Cond. J. 2014, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Križaj, D.; Šimunič, B.; Žagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008, 18, 645–651. [Google Scholar] [CrossRef]
- García-Manso, J.M.; Rodríguez-Ruiz, D.; Rodríguez-Matoso, D.; de Yves, S.; Sarmiento, S.; Quiroga, M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J. Sports Sci. 2011, 29, 619–625. [Google Scholar] [CrossRef]
- Paravlic, A.H.; Milanović, Z.; Abazović, E.; Vučković, G.; Spudić, D.; Rošker, Z.M.; Pajek, M.; Vodičar, J. The muscle contractile properties in female soccer players: Inter-limb comparison using tensiomyography. J. Musculoskelet. Neuronal Interact. 2022, 22, 179–192. [Google Scholar]
- Šimunič, B.; Rozman, S.; Pišot, R. Detecting the Velocity of the Muscle Contraction. 2007. Available online: http://www.tensiomyograph.de/download/Det-E.pdf (accessed on 26 July 2022).
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access J. Sport Med. 2019, 10, 49–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knez, N.; Valenčič, V. Influence of impulse duration on skeletal muscle belly response. In Proceedings of the IX Electrochenical and Computer Science Conference, Portoroz, Eslovenia; 2000; pp. 301–304. [Google Scholar]
- Perotto, A.O.; Thomas, C.C.; Underwood, F.B. Anatomical guide for the electromyographer: The Limbs and Trunk. Phys. Ther. 2006, 86, 345. [Google Scholar]
- Castillo-Rodríguez, A.; Fernández-García, J.C.; Chinchilla-Minguet, J.L.; Carnero, E.Á. Relationship between muscular strength and sprints with changes of direction. J. Strength Cond. Res. 2012, 26, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.N.; Yahaya, A.S.; Ramli, N.A.; Al Bakri, A.M.M. Filling Missing Data Using Interpolation Methods: Study on the Effect of Fitting Distribution; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; pp. 889–895. [Google Scholar]
- Shaffer, J.P. Multiple hypothesis testing. Annu. Rev. Psychol. 1995, 46, 561–584. [Google Scholar] [CrossRef]
- Rodríguez-Matoso, D.; García Manso, J.M.; Sarmiento Montesdeoca, S.; De Saa, Y.; Vaamonde, D.; Rodríguez-Ruiz, D.; Da Silva-Grigoletto, M.E. Assessment of muscle response as a control tool in the area of physical activity, health, and sports. Rev. Andal. Med. Deport. 2012, 5, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [Green Version]
- Kent-Braun, J.A.; Fitts, R.H.; Christie, A. Skeletal muscle fatigue. Compr. Physiol. 2012, 2, 997–1044. [Google Scholar]
- Wilmes, E.; De Ruiter, C.J.; Bastiaansen, B.J.; Goedhart, E.A.; Brink, M.S.; Van der Helm, F.C.; Savelsbergh, G.J. Associations between hamstring fatigue and sprint kinematics during a simulated football (Soccer) match. Med. Sci. Sport Exerc. 2021, 53, 2586–2595. [Google Scholar] [CrossRef]
- García-Sillero, M.; Benítez-Porres, J.; García-Romero, J.; Bonilla, D.A.; Petro, J.L.; Vargas-Molina, S. Comparison of interventional strategies to improve recovery after eccentric exercise-induced muscle fatigue. Int. J. Environ. Res. Public Health 2021, 18, 647. [Google Scholar] [CrossRef]
- Muñoz-López, A.; De Hoyo, M.; Nuñez, F.J.; Sañudo, B. Using tensiomyography to assess changes in knee muscle contraction properties after concentric and eccentric fatiguing muscle actions. J. Strength Cond. Res. 2022, 36, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Ramírez-Campillo, R.; Zanetti, V.; Abad, C.C.; Nakamura, F.Y. Muscle contraction velocity: A suitable approach to analyze the functional adaptations in elite soccer players. J. Sport Sci. Med. 2016, 15, 483–491. [Google Scholar]
- García-García, Ó.; Serrano-Gómez, V.; Hernadez-Mendo, A.; Tapia-Flores, A. Assessment of the in-season changes in mechanical and neuromuscular characteristics in professional soccer players. J. Sports Med. Phys. Fit. 2016, 47, 381–390. [Google Scholar]
- Piqueras-Sanchiz, F.; Martínez-Aranda, L.M.; Pareja-Blanco, F.; Rodríguez-Ruiz, D.; García-García, Ó. Evolution of contractile properties of the lower limb muscles throughout a season in elite futsal players. J. Sports Med. Phys. Fit. 2020, 60, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Baeza, D.; Diaz-Ureña, G.; González-Millán, C. Differences in the Contractile Properties of the Biceps Femoris and Semitendinosus Muscles Throughout a Season in Professional Soccer Players. J. Hum. Kinet. 2022, 84, 74–81. [Google Scholar]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J. Sports Sci. 2018, 36, 1313–1318. [Google Scholar] [CrossRef]
- Bourne, M.; Opar, D.; Shield, A. Hamstring muscle activation during high-speed overground running: Impact of previous strain injury. Br. J. Sports Med. 2014, 48, 571–572. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Associations between measures of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan: A systematic review and meta-analysis. Sport Med. 2015, 45, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Haugen, T.A.; Breitschädel, F.; Seiler, S. Sprint mechanical properties in soccer players according to playing standard, position, age and sex. J. Sports Sci. 2020, 38, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Degens, H.; Korhonen, M.T. Factors contributing to the variability in muscle ageing. Maturitas 2012, 73, 197–201. [Google Scholar] [CrossRef]
- Haugen, T.A.; Solberg, P.A.; Foster, C.; Moran-Navarro, R.; Breitschadel, F.; Hopkins, W.G. Peak age and performance progression in world class track and field athletes. Int. J. Sports Physiol. Perform. 2018, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D.; Rupf, R.; Brown, T.D.; Marques, M.C. Physical performance characteristics of high-level female soccer players 12-21 years of age. Scand. J. Med. Sci. Sport 2011, 21, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Falch, H.; Rædergård, H.; Tillaar, R. Activity between a 180° change of direction task and different countermovement jumps. Sports 2020, 8, 47. [Google Scholar] [CrossRef]
- Beato, M.; Madruga-Parera, M.; Piqueras-Sanchiz, F.; Moreno-Pérez, V.; Romero-Rodriguez, D. Acute effect of eccentric overload exercises on change of direction performance and lower-limb muscle contractile function. J. Strength Cond. Res. 2021, 35, 3327–3333. [Google Scholar] [CrossRef] [PubMed]
Sample | CG | EG | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
n | 34 | 15 | 19 | |||
Age (years) | 24.3 | 4.64 | 21.07 | 1.73 | 26.68 | 4.69 |
Height (cm) | 179 | 7.07 | 178 | 8.68 | 179 | 5.7 |
Weight (kg) | 74 | 6.16 | 72.79 | 7.23 | 74.89 | 5.27 |
Values | |||||||
---|---|---|---|---|---|---|---|
Pre | Post | ||||||
Leg | Muscle | Var | Group | Mean | SD | Mean | SD |
Right | BF | Tc (ms) | CG | 26.02 | 8.54 | 25.57 | 18.47 |
EG | 29.92 | 7.68 | 37.75 | 14.89 | |||
Dm (mm) | CG | 4.23 | 2.29 | 4.15 | 1.68 | ||
EG | 5.35 | 1.79 | 4.79 | 1.91 | |||
ST | Tc (ms) | CG | 48.27 | 6.65 | 30.42 | 10.39 | |
EG | 47.42 | 9.05 | 44.43 | 11.36 | |||
Dm (mm) | CG | 7.80 | 2.11 | 5.88 | 2.28 | ||
EG | 9.30 | 2.81 | 6.24 | 2.96 | |||
Left | BF | Tc (ms) | CG | 43.61 | 18.89 | 30.85 | 19.14 |
EG | 38.07 | 16.27 | 36.34 | 11.40 | |||
Dm (mm) | CG | 6.83 | 2.87 | 6.34 | 1.85 | ||
EG | 6.17 | 3.11 | 5.44 | 2.76 | |||
ST | Tc (ms) | CG | 46.96 | 6.44 | 35.58 | 9.38 | |
EG | 49.54 | 7.34 | 41.11 | 12.32 | |||
Dm (mm) | CG | 8.54 | 1.67 | 6.45 | 1.57 | ||
EG | 7.82 | 2.58 | 6.41 | 3.18 |
F-Value | Df | p-Value | |||
---|---|---|---|---|---|
Time | 5.540 | 2,31 | 0.009 | 0.263 | 0.817 |
Time × Group | 5.348 | 2,31 | 0.010 | 0.257 | 0.803 |
Muscle | 19.109 | 2,31 | <0.001 | 0.552 | 1 |
Muscle × Group | 1.632 | 2,31 | 0.212 | 0.095 | 0.318 |
Time × muscle | 16.160 | 2,31 | <0.001 | 0.510 | 0.99 |
Time × muscle × group | 0.092 | 2,31 | 0.912 | 0.184 | 0.063 |
F-Value | Df | p-Value | |||
---|---|---|---|---|---|
Time | 3.788 | 2,31 | 0.034 | 0.196 | 0.65 |
Time × Group | 0.179 | 2,31 | 0.837 | 0.011 | 0.07 |
Muscle | 4.151 | 2,31 | 0.025 | 0.21 | 0.69 |
Muscle × Group | 1.178 | 2,31 | 0.321 | 0.071 | 0.24 |
Time × muscle | 4.054 | 2,31 | 0.027 | 0.207 | 0.68 |
Time × muscle × group | 1.546 | 2,31 | 0.229 | 0.091 | 0.30 |
p-Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Leg | Var | Ti | TixG | M | MxG | TixM | TixMxG | Ti | TixG | M | MxG | TixM | TixMxG |
Right | Tc (ms) | <0.001 | 0.005 | <0.001 | 0.089 | <0.001 | 0.007 | 0.471 | 0.296 | 0.952 | 0.12 | 0.476 | 0.278 |
Dm (mm) | 0.003 | 0.363 | <0.001 | 0.41 | 0.001 | 0.413 | 0.33 | 0.036 | 0.866 | 0.03 | 0.365 | 0.029 | |
Left | Tc (ms) | 0.002 | 0.171 | 0.066 | 0.525 | 0.627 | 0.461 | 0.332 | 0.076 | 0.134 | 0.017 | 0.01 | 0.023 |
Dm (mm) | 0.071 | 0.864 | 0.024 | 0.665 | 0.135 | 0.543 | 0.13 | 0.001 | 0.194 | 0.008 | 0.09 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Baeza, D.; Diaz-Urena, G.; González-Millán, C. Effect of an Individualised Training Programme on Hamstrings and Change Direction Based on Tensiomyography in Football Players. Appl. Sci. 2022, 12, 10908. https://doi.org/10.3390/app122110908
Fernández-Baeza D, Diaz-Urena G, González-Millán C. Effect of an Individualised Training Programme on Hamstrings and Change Direction Based on Tensiomyography in Football Players. Applied Sciences. 2022; 12(21):10908. https://doi.org/10.3390/app122110908
Chicago/Turabian StyleFernández-Baeza, Daniel, Germán Diaz-Urena, and Cristina González-Millán. 2022. "Effect of an Individualised Training Programme on Hamstrings and Change Direction Based on Tensiomyography in Football Players" Applied Sciences 12, no. 21: 10908. https://doi.org/10.3390/app122110908
APA StyleFernández-Baeza, D., Diaz-Urena, G., & González-Millán, C. (2022). Effect of an Individualised Training Programme on Hamstrings and Change Direction Based on Tensiomyography in Football Players. Applied Sciences, 12(21), 10908. https://doi.org/10.3390/app122110908