Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition
Abstract
:1. Introduction
- To determine the equipment’s performance characteristics;
- To estimate the DHC measurement error regarding marine particles;
- To assess the validity of a classification.
2. Methods and Equipment
2.1. DHC Engineering
- Weight—23 kg;
- Overall dimensions (D × H × W)—581 × 290.5 × 450 mm;
- Variable volume investigated during one exposure—0.2–0.75 L;
- Allowable hydrostatic pressure:
- o
- Without recalibration—50 A;
- o
- With built-in calibration—100 A;
- Mako G-507 CMOS camera (manufactured by Allied Vision [39]):
- o
- Sony DMX264 matrix;
- o
- Matrix size—2464 (H) × 2056 (V);
- o
- Pixel size—3.45 μm × 3.45 μm;
- Wavelength of the laser-diode fiber module;
- o
- For hologram recording—0.66 μm;
- o
- For illumination and excitation of the phototropic response—0.52 μm;
- Size of measured particles—from 0.1 to 28 mm;
- Sinking speed during vertical probing—0.1–1.0 ppm;
- Discreteness of counts when forming a depth profile—1 m;
- Hologram Ethernet channel speed—1 Gb/s.
- Water depth;
- Limit constraints associated with design features intended for a hydrostatic pressure of 100 A;
- Need to continuously calibrate the increase at depths greater than 500 m due to a significant change in the refractive index of water. In this case, holography is performed with the set calipers (4) (Figure 2).
- Weight—65 kg;
- Volume studied per one exposure—approximately 0.75 L;
- Permitted hydrostatic pressure—100 А;
- Advantech PCM-9310CQ-S6A1E on-board computer;
- SSD capacity—250 GB;
- Four channels to connect with hydrophysical sensors (RS485 and RS232)—temperature, pressure, microwave conductivity, and CTD (Valeport Mini);
- Communication channels:
- Wi-Fi backup channel to run and configure the probe for autonomous work;
- 1 Gb Ethernet (to transfer data on plankton and hydrophysics).
2.2. DHC Software
- To solve operational tasks according to the assessment of the integral characteristics of plankton with a high degree of averaging by volume;
- To solve monitoring tasks related to the classification of plankton individuals and other particles according to preliminary defined criteria, a set of features, and databases of plankton in the studied water area;
- To solve monitoring tasks related to the analysis of plankton behavior by identifying preliminary signs of behavioral responses.
2.3. Data Analysis
2.3.1. Integral DHC data
2.3.2. Methods and Equipment for Verification and Comparison
- For plankton—by vertical net catching followed by sample fixation, taxonomic determination, counting of individuals, and laboratory measurement under a microscope;
- For suspension—by processing turbidimetric turbidity measurements;
Net Sampling of Plankton
Turbidimetric Measurements
Acoustic Survey
3. Results and Discussion
- Time for recording and reading the holographic sample data~3.5 min/m;
- Required memory, taking into account the post-processing data~400 MB/m;
- Data processing time~1.2 h/m.
- The measurements in the Kara Sea were taken near the Ob River estuary, which showed a very high content of the river-borne terrigenous suspension [65]. These factors determine the high turbidity of the water area and the reduced content of plankton;
- The water was more transparent, and there was more plankton in the Laptev Sea outside the area of the river flow.
- Different submergence depths of the net and the DHC, different averaging volumes, and different sea states affect the camera shooting quality, as illustrated in Figure 12;
- 2.
- The blur of the shape parameter of the Others taxon. The mesh size of the net here is 180 μm. For the DHC, the minimum size is H = 200 μm adopted in the classification algorithm (Table 1). Unlike other taxa, this group includes organisms of various shapes. In addition, particles of non-living matter may also belong here.
4. Conclusions
- The DHC technology in the described configuration has the following performance characteristics (normalized per 1 m of the measured profile in depth):
- Holographic sampling and recording time~3.5 min/m;
- Required memory~400 MB/m;
- Data processing~1 h/m.
- The DHC technology can be used for noninvasive automatic evaluation of spatial and temporal distributions of plankton concentrations. However, the competent accounting of zooplankton taxonomy at the level of the main systematic orders requires that the signatures serving as the basis for the decision be significantly complicated (compared to a rectangle) and supplemented to achieve errors lower than 30%;
- The DHC technology can be used to obtain additional information on the medium, namely:
- Water turbidity estimated according to the radiation shielding factor (degree) by particles of the Suspension taxon. Turbidity data obtained using the DHC technology is compared with that measured using a turbidimeter. The correlation coefficient between turbidity measurements using the turbidimeter and the DHC was 75.5%;
- The DHC technology has certain prospects for its use in the biogeochemical contrast conditions of the East Siberian Arctic Seas. This requires revising the methodology of data selection in the following areas:
- Holographic survey data shall be averaged along a large area~1 m2 of water surface along the path of the vessel;
- Holographic data shall be strictly bound to an acoustic survey;
- In-lab DHC vs. generated bubble flux studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lombard, F.; Boss, E.; Waite, A.M.; Vogt, M.; Uitz, J.; Stemmann, L.; Sosik, H.M.; Schulz, J.; Romagnan, J.-B.; Picheral, M.; et al. Globally Consistent Quantitative Observations of Planktonic Ecosystems. Front. Mar. Sci. 2019, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Briseño-Avena, C.; Prairie, J.C.; Franks, P.J.S.; Jaffe, J.S. Comparing Vertical Distributions of Chl-a Fluorescence, Marine Snow, and Taxon-Specific Zooplankton in Relation to Density Using High-Resolution Optical Measurements. Front. Mar. Sci. 2020, 7, 602. [Google Scholar] [CrossRef]
- Dalpadado, P.; Arrigo, K.R.; van Dijken, G.L.; Skjoldal, H.R.; Bagøien, E.; Dolgov, A.V.; Prokopchuk, I.P.; Sperfeld, E. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea. Prog. Oceanogr. 2020, 185, 102320. [Google Scholar] [CrossRef]
- Dyomin, V.V.; Davydova, A.Y.; Morgalev, S.Y.; Kirillov, N.S.; Olshukov, A.; Polovtsev, I.; Davydov, S. Monitoring of Plankton Spatial and Temporal Characteristics with the Use of a Submersible Digital Holographic Camera. Front. Mar. Sci. 2020, 7, 653. [Google Scholar] [CrossRef]
- Guy-Haim, T.; Lyons, D.A.; Kotta, J.; Ojaveer, H.; Queirós, A.M.; Chatzinikolaou, E.; Arvanitidis, C.; Como, S.; Magni, P.; Blight, A.J.; et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis. Glob. Chang. Biol. 2018, 24, 906–924. [Google Scholar] [CrossRef]
- Harvey, B.P.; Gwynn-Jones, D.; Moore, P.J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 2013, 3, 1016–1030. [Google Scholar] [CrossRef]
- Markussen, T.N.; Konrad, C.; Waldmann, C.; Becker, M.; Fischer, G.; Iversen, M.H. Tracks in the Snow—Advantage of Combining Optical Methods to Characterize Marine Particles and Aggregates. Front. Mar. Sci. 2020, 7, 476. [Google Scholar] [CrossRef]
- Mau, S.; Gentz, T.; Körber, J.-H.; Torres, M.E.; Römer, M.; Sahling, H.; Wintersteller, P.; Martinez, R.; Schlüter, M.; Helmke, E. Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences 2015, 12, 5261–5276. [Google Scholar] [CrossRef] [Green Version]
- Menden-Deuer, S.; Morison, F.; Montalbano, A.L.; Franzè, G.; Strock, J.; Rubin, E.; McNair, H.; Mouw, C.; Marrec, P. Multi-Instrument Assessment of Phytoplankton Abundance and Cell Sizes in Mono-Specific Laboratory Cultures and Whole Plankton Community Composition in the North Atlantic. Front. Mar. Sci. 2020, 7, 254. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Korotenko, K.A.; Zavialov, P.O.; Chiang, W.-S.; Liu, C.-C. Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: Case study of the Peinan River, Taiwan. Nat. Hazards Earth Syst. Sci. 2016, 16, 41–54. [Google Scholar] [CrossRef]
- Osadchiev, A.; Silvestrova, K.; Myslenkov, S. Wind-Driven Coastal Upwelling near Large River Deltas in the Laptev and East-Siberian Seas. Remote Sens. 2020, 12, 844. [Google Scholar] [CrossRef] [Green Version]
- Römer, M.; Hsu, C.W.; Loher, M.; MacDonald, I.R.; dos Santos Ferreira, C.; Pape, T.; Mau, S.; Bohrmann, G.; Sahling, H. Amount and Fate of Gas and Oil Discharged at 3400 m Water Depth from a Natural Seep Site in the Southern Gulf of Mexico. Front. Mar. Sci. 2019, 6, 700. [Google Scholar] [CrossRef]
- Kopelevich, O.V. The Current Low-Parametric Models of Seawater Optical Properties. In Proceedings of the International Conference “Current Problems in Optics of Natural Waters”, St. Petersburg, Russia, 8–12 September 2001; pp. 18–23. [Google Scholar]
- Kostylev, N.M.; Kolyuchkin, V.Y.; Stepanov, R.O. A Mathematical Model of Laser Radiation Propagation in Seawater. Opt. Spectrosc. 2019, 127, 612–617. [Google Scholar] [CrossRef]
- Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Memmolo, P.; Carcagnì, P.; Bianco, V.; Merola, F.; Goncalves da Silva Junior, A.; Garcia Goncalves, L.M.; Ferraro, P.; Distante, C. Learning Diatoms Classification from a Dry Test Slide by Holographic Microscopy. Sensors 2020, 20, 6353. [Google Scholar] [CrossRef]
- Greenbaum, A.; Luo, W.; Su, T.-W.; Göröcs, Z.; Xue, L.; Isikman, S.O.; Coskun, A.F.; Mudanyali, O.; Ozcan, A. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 2012, 9, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Yu, J.; Liu, H.; Yuan, G.; Xu, W.; Hou, R.; Guo, G. Miniaturized digital inline holographic camera for in-situ plankton detection. In Advanced Sensor Systems and Applications VIII; Liu, T., Jiang, S., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 32. [Google Scholar]
- Zhu, Y.; Yeung, C.H.; Lam, E.Y. Microplastic pollution monitoring with holographic classification and deep learning. JPhys Photonics 2021, 3, 024013. [Google Scholar] [CrossRef]
- Dyomin, V.; Gribenyukov, A.; Davydova, A.; Zinoviev, M.; Olshukov, A.; Podzyvalov, S.; Polovtsev, I.; Yudin, N. Holography of particles for diagnostics tasks [Invited]. Appl. Opt. 2019, 58, G300–G310. [Google Scholar] [CrossRef]
- Dyomin, V.V.; Polovtsev, I.G.; Davydova, A.Y.; Olshukov, A.S. Digital holographic camera for plankton monitoring. In Practical Holography XXXIII: Displays, Materials, and Applications; Bjelkhagen, H.I., Bove, V.M., Eds.; SPIE: Bellingham, WA, USA, 2019; pp. 109440L-1–109440L-9. [Google Scholar]
- Dyomin, V.V.; Kamenev, D.V. Evaluation of Algorithms for Automatic Data Extraction from Digital Holographic Images of Particles. Russ. Phys. J. 2016, 58, 1467–1474. [Google Scholar] [CrossRef]
- Dyomin, V.V.; Polovtsev, I.G.; Davydova, A.Y. Fast recognition of marine particles in underwater digital holography. In 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics; Romanovskii, O.A., Matvienko, G.G., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10466, p. 1046627. [Google Scholar]
- Dyomin, V.; Olshukov, A.S.; Davydova, A. Data acquisition from digital holograms of particles. In Unconventional Optical Imaging; Fournier, C., Georges, M.P., Popescu, G., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10677, p. 123. [Google Scholar]
- Nayak, A.R.; Malkiel, E.; McFarland, M.N.; Twardowski, M.S.; Sullivan, J.M. A Review of Holography in the Aquatic Sciences: In situ Characterization of Particles, Plankton, and Small Scale Biophysical Interactions. Front. Mar. Sci. 2021, 7, 572147. [Google Scholar] [CrossRef]
- Shao, S.; Li, C.; Hong, J. A hybrid image processing method for measuring 3D bubble distribution using digital inline holography. Chem. Eng. Sci. 2019, 207, 929–941. [Google Scholar] [CrossRef]
- Zhu, Y.; Lo, H.K.A.; Yeung, C.H.; Lam, E.Y. Microplastic pollution assessment with digital holography and zero-shot learning. APL Photonics 2022, 7, 076102. [Google Scholar] [CrossRef]
- Bianco, V.; Pirone, D.; Memmolo, P.; Merola, F.; Ferraro, P. Identification of Microplastics Based on the Fractal Properties of Their Holographic Fingerprint. ACS Photonics 2021, 8, 2148–2157. [Google Scholar] [CrossRef]
- Işıl, Ç.; de Haan, K.; Göröcs, Z.; Koydemir, H.C.; Peterman, S.; Baum, D.; Song, F.; Skandakumar, T.; Gumustekin, E.; Ozcan, A. Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning. ACS Photonics 2021, 8, 1232–1242. [Google Scholar] [CrossRef]
- Bianco, V.; Marchesano, V.; Finizio, A.; Paturzo, M.; Ferraro, P. Self-propelling bacteria mimic coherent light decorrelation. Opt. Express 2015, 23, 9388. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Colier, R.; Burckhardt, C.; Lin, L. Optical Holography; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Picart, P. New Techniques in Digital Holography; Picart, P., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 9781119091745. [Google Scholar]
- Schnars, U.; Jueptner, W. Digital Holography; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-21934-X. [Google Scholar]
- Thompson, B.J. Holographic particle sizing techniques. J. Phys. E. 1974, 7, 781–788. [Google Scholar] [CrossRef]
- Allied Vision—Industrial Cameras for Machine and Embedded Vision—Allied Vision. Available online: https://www.alliedvision.com/en/ (accessed on 13 October 2022).
- Park, S.; Kim, Y.; Moon, I. Automated phase unwrapping in digital holography with deep learning. Biomed. Opt. Express 2021, 12, 7064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Xu, M.; Zhang, H.; Jiang, X. Phase unwrapping in digital holography based on non-subsampled contourlet transform. Opt. Commun. 2018, 407, 367–374. [Google Scholar] [CrossRef]
- Dyomin, V.; Davydova, A.Y.; Polovtsev, I.; Olshukov, A. Digital hologram as a display optical system. In Practical Holography XXXV: Displays, Materials, and Applications; Bjelkhagen, H.I., Lee, S.-H., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 9. [Google Scholar]
- Bochdansky, A.B.; Jericho, M.H.; Herndl, G.J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m. Limnol. Oceanogr. Methods 2013, 11, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 2015, 130, 205–248. [Google Scholar] [CrossRef]
- Watson, J.; Alexander, S.; Craig, G.; Hendry, D.C.; Hobson, P.R.; Lampitt, R.S.; Marteau, J.M.; Nareid, H.; Player, M.A.; Saw, K.; et al. Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles. Meas. Sci. Technol. 2001, 12, L9–L15. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Pivovarov, N.Y.; Popov, V.V.; Zimov, S.A.; Voropaev, Y.V.; Daviodov, S.P. Atmospheric carbon emission from North Asian Lakes: A factor of global significance. Atmos. Environ. 1996, 30, 1657–1671. [Google Scholar] [CrossRef]
- Chernykh, D.; Yusupov, V.; Salomatin, A.; Kosmach, D.; Shakhova, N.; Gershelis, E.; Konstantinov, A.; Grinko, A.; Chuvilin, E.; Dudarev, O.; et al. Sonar estimation of methane bubble flux from thawing subsea permafrost: A case study from the laptev sea shelf. Geosci. 2020, 10, 411. [Google Scholar] [CrossRef]
- Goswami, S.C. Zooplankton Methodology, Collection & Identification—A Field Manual; Dhargalkar, V.K., Verlecar, X.N., Eds.; National Institute of Oceanography: Dona Paula, Goa, India, 2004. [Google Scholar]
- Kovalev, A.V.; Mazzocchi, M.G.; Siokou, I.; Kideys, A.E. Zooplankton of the Black Sea and the Eastern Mediterranean: Similarities and dissimilarities. Mediterr. Mar. Sci. 2001, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Hernández-León, S.; Montero, I. Zooplankton biomass estimated from digitalized images in Antarctic waters: A calibration exercise. J. Geophys. Res. 2006, 111, C05S03. [Google Scholar] [CrossRef] [Green Version]
- Lehette, P.; Hernández-León, S. Zooplankton biomass estimation from digitized images: A comparison between subtropical and Antarctic organisms. Limnol. Oceanogr. Methods 2009, 7, 304–308. [Google Scholar] [CrossRef]
- Wiebe, P.H. Functional regression equations for zooplankton displacement volume wet weight, dry weight, and carbon: A correction. Fish. Bull. 1988, 86, 833–835. [Google Scholar]
- Degterev, A.K. Influence of gas hydrate formation on methane seeps at the bottom of water reservoirs. Russ. Geol. Geophys. 2017, 58, 1101–1105. [Google Scholar] [CrossRef]
- 26th ITTC Specialist Committee. Fresh Water and Seawater Properties. Int. Towing Tank Conf. 2011, 5, 1596–1599.
- Leifer, I.; Chernykh, D.; Shakhova, N.; Semiletov, I. Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea. Cryosphere 2017, 11, 1333–1350. [Google Scholar] [CrossRef] [Green Version]
- Hayward, P.J.; Ryland, J.S. (Eds.) Handbook of the Marine Fauna of North-West Europe; Oxford University Press: Oxford, UK, 2017; p. 816. [Google Scholar]
- Diversity and Geographic Distribution of Pelagic Copepoda. Available online: https://copepodes.obs-banyuls.fr/en/diversite_geo_b.php (accessed on 22 August 2022).
- Muyakshin, S.I.; Sauter, E. The hydroacoustic method for the quantification of the gas flux from a submersed bubble plume. Oceanology 2010, 50, 995–1001. [Google Scholar] [CrossRef]
- Salomatin, A.S.; Yusupov, V.I. Acoustic investigations of gas “flares” in the Sea of Okhotsk. Oceanology 2011, 51, 857–865. [Google Scholar] [CrossRef]
- Salomatin, A.S.; Yusupov, V.I.; Vereshchagina, O.F.; Chernykh, D.V. An acoustic estimate of methane concentration in a water column in regions of methane bubble release. Acoust. Phys. 2014, 60, 671–677. [Google Scholar] [CrossRef]
- James, R.H.; Bousquet, P.; Bussmann, I.; Haeckel, M.; Kipfer, R.; Leifer, I.; Niemann, H.; Ostrovsky, I.; Piskozub, J.; Rehder, G.; et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol. Oceanogr. 2016, 61, S283–S299. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science. 2017, 356, 948–953. [Google Scholar] [CrossRef] [Green Version]
- Weidner, E.; Weber, T.C.; Mayer, L.; Jakobsson, M.; Chernykh, D.; Semiletov, I. A wideband acoustic method for direct assessment of bubble-mediated methane flux. Cont. Shelf Res. 2019, 173, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Chernykh, D.V.; Salomatin, A.S.; Yusupov, V.I.; Shakhova, N.E.; Kosmach, D.A.; Dudarev, O.V.; Gershelis, E.V.; Silionov, V.I.; Ananiev, R.A.; Grinko, A.A.; et al. Acoustic investigations of the deepest methane seeps in the Okhotsk sea. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2021, 332, 57–68. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Asadulin, E.E.; Miroshnikov, A.Y.; Zavialov, I.B.; Dubinina, E.O.; Belyakova, A. Bottom Sediments Reveal inter-Annual Variability of interaction between the ob and Yenisei plumes in the Kara Sea. Sci. Rep. 2019, 9, 18642. [Google Scholar] [CrossRef] [PubMed]
Taxa | Presence of Outgrowths | H, mm | M |
---|---|---|---|
1. Chaetognatha | YES | >0.2 | 0–0.2 |
2. Copepoda | YES | >0.2 | 0.2–0.5 |
3. Appendicularia | YES | >0.2 | 0.5–0.66 |
4. Cladocera | YES | >0.2 | 0.66–0.9 |
5. Other | YES | >0.2 | 0.9–1 |
6. Rotifera | YES | ≤0.2 | 0–0.9 |
7. Phytoplankton chain | NO | ANY | 0–0.25 |
8. Suspension | NO | ≤0.2 | 0.9–1 |
9. Marine snow | NO | ANY | 0.25–0.9 |
10. Bubble | NO | >0.2 | 0.9–1 |
ID | Height, mkm | Width, mkm | M | Gravity Center Z, mm | Gravity Center X, mm | Gravity Center Y, mm | Angle, Degrees | Border Length, mm | Particle Square, mm2 | Limb | Depth | Pressure | Temperature | Conductivity | Taxon |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 295.23 | 295.23 | 1.00 | 656.70 | 6.36 | 10.85 | 0.00 | 1025.72 | 70,399.07 | 0 | 2.57 | 127174 | 1 | 0.011 | Bubble |
1 | 52.99 | 75.70 | 0.70 | 411.84 | 14.26 | 13.03 | 0.00 | 239.64 | 3552.90 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
2 | 153.21 | 100.54 | 0.66 | 191.97 | 13.80 | 12.36 | −18.43 | 463.38 | 11,317.72 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
3 | 45.42 | 52.99 | 0.86 | 602.87 | 0.70 | 11.38 | −90.00 | 183.52 | 2206.24 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
4 | 211.96 | 105.98 | 0.50 | 269.42 | 7.44 | 11.39 | 0.00 | 810.84 | 21,317.42 | 0 | 2.57 | 127174 | 1 | 0.011 | Marine snow |
5 | 121.12 | 90.84 | 0.75 | 411.84 | 14.32 | 11.29 | 0.00 | 388.44 | 7908.08 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
6 | 52.99 | 68.13 | 0.78 | 347.39 | 9.37 | 9.88 | 0.00 | 224.50 | 3209.07 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
7 | 45.42 | 45.42 | 1.00 | 426.96 | 13.24 | 9.83 | −90.00 | 168.38 | 1919.71 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
8 | 108.33 | 213.28 | 0.51 | 606.05 | 10.46 | 9.42 | −63.43 | 579.31 | 17,220.12 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
9 | 136.26 | 121.12 | 0.89 | 608.43 | 11.07 | 9.03 | 0.00 | 465.98 | 11,833.46 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
10 | 68.13 | 37.85 | 0.56 | 322.91 | 13.12 | 8.22 | −90.00 | 207.53 | 2320.85 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
11 | 52.99 | 45.42 | 0.86 | 202.34 | 8.85 | 8.13 | 0.00 | 187.95 | 2005.67 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
12 | 105.98 | 68.13 | 0.64 | 665.54 | 10.86 | 7.82 | 0.00 | 317.18 | 5931.06 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
13 | 98.41 | 113.55 | 0.87 | 320.65 | 12.18 | 5.74 | −90.00 | 409.86 | 7564.25 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
14 | 45.42 | 45.42 | 1.00 | 99.05 | 9.53 | 5.38 | −90.00 | 177.25 | 1977.02 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
15 | 105.98 | 75.70 | 0.71 | 494.98 | 9.14 | 4.12 | 0.00 | 351.89 | 4641.70 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
16 | 45.42 | 68.13 | 0.67 | 147.99 | 10.86 | 4.23 | −90.00 | 817.11 | 13,753.18 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
17 | 60.56 | 52.99 | 0.88 | 107.62 | 11.36 | 3.93 | 0.00 | 213.80 | 2836.59 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
18 | 45.42 | 45.42 | 1.00 | 509.54 | 10.37 | 3.64 | −90.00 | 181.68 | 2062.98 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
19 | 83.27 | 83.27 | 1.00 | 379.69 | 10.28 | 3.63 | 0.00 | 315.34 | 5845.10 | 0 | 2.57 | 127174 | 1 | 0.011 | Suspension |
20 | 224.29 | 494.22 | 0.45 | 147.99 | 10.85 | 3.69 | −36.03 | 2284.04 | 97,275.07 | 1 | 2.57 | 127174 | 1 | 0.011 | Copepoda |
21 | 264.95 | 90.84 | 0.34 | 367.99 | 12.51 | 2.63 | 0.00 | 705.62 | 17,965.09 | 0 | 2.57 | 127174 | 1 | 0.011 | Marine snow |
Station No. | Coordinates | Geographical Description | Depth, m | Range of Interest |
---|---|---|---|---|
6932 | 72°57′34.8″ N 73°10′13.2″ E | Kara Sea | 29 | Comparison of turbidimetric data |
6941 | 77°06′07.2″ N 125°05′43.2″ E | Laptev Sea | 364 | Comparison of turbidimetric data |
6947 | 76°46′33.0″ N 125°49′40.8″ E | Laptev Sea | 72 | In situ study of bubbles by depth |
6961 | 74°59′31.8″ N 160°58′47.4″ E | East Siberian Sea | 45.5 | Validation of classification, comparison of turbidimetric data |
6962 | 74°59′25.2″ N 160°59′10.8″ E | East Siberian Sea | 45.5 | In situ study of bubbles by depth |
6975 | 72°28′57.6″ N 130°32′16.8″ E | Laptev Sea | 14.5 | In situ study of bubbles in the surface layer of the area of massive methane release |
6995 | 77°54′00.0″ N 105°03′05.4″ E | Vilkitsky Strait | 223 | Validation of classification |
Parameter | No. 6932 | No. 6941 | No. 6947 | No. 6961 | No. 6962 | No. 6975 | No. 6995 |
---|---|---|---|---|---|---|---|
Submersion depth | 20 m | 109 m | 20 m | 45 m | 19 m | 1 m | 5 m |
Submersion time | 2 min 35 s | 5 min | 2 min 40 s | 14 min 50 s | 18 min 18 s | 30 s | 2 min 44 s |
Lifting time | 1 min | 5 min 20 s | 2 min 40 s | 14 min 40 s | 17 min 18 s | 30 s | 2 min 44 s |
Wi-Fi read time | 11 min | 19 min | 21 min | 120 min | 5 min | 2 min | 14 min |
Number of registered holograms | 128 | 231 | 256 | 1470 | 62 | 28 | 173 |
Required memory considering the post-processing data | 1.5 GB | 2.8 GB | 3.1 GB | 17.6 GB | 0.7 GB | 0.3 GB | 2.1 GB |
Station processing time | 4.3 h | 7.7 h | 8.5 h | 49 h | 2.1 h | 1 h | 5.8 h |
Traditional Classification of Plankton Samples Collected by the Net (Sampling from a Depth of 32 m, Averaging over 3.2 m3) | Classification of Plankton Using the DHC (to a Depth of up to 5 m, Averaging over 0.044 m3) | ||||||
---|---|---|---|---|---|---|---|
Organism, Type | Class | Taxon or Group | Genus | Number, pcs/m3 | Taxon | Number, pcs/m3 | Holographic Image |
Arthropoda | Crustacea | Copepoda | Oitona | 296.9 | Copepoda | 666.5 | |
Calanus/Pseudocalanus | 343.8 | ||||||
Malacostraca | 0.3 | ||||||
Chaetognatha | 13.1 | Chaetognatha | 0 | ||||
Chordata | Appendicularia | 0.9 | Appendicularia | 156.8 | |||
Cnidaria | Hydrozoa | 1.3 | Others | 352.0 | |||
Mollusca | Pteropoda | Limacina | 78.1 | ||||
Others | Others | Larvae | 71.9 |
Traditional Classification of Plankton Samples Collected by the Net (Sampling from a Depth of 30 m, averaging over 3 m3) | Classification of Plankton Using the DHC (to a Depth of up to 45 m, Averaging over 0.825 m3) | Expert Classification of Holographic Images (to a Depth of up to 45 m, Averaging over 0.825 m3) | ||||||
---|---|---|---|---|---|---|---|---|
Organism, Type | Class | Taxon or Group | Genus | Number, pcs/m3 | Taxon | Number, pcs/m3 | Holographic Image | Number, pcs/m3 |
Arthropoda | Crustacea | Copepoda | Oitona | 400.0 | Copepoda | 809.0 | 694.4 | |
Calanus/Pseudocalanus | 500.0 | |||||||
Malacostraca | 0.0 | |||||||
Chaetognatha | 2.7 | Chaetognatha | 70 | 99.2 | ||||
Chordata | Appendicularia | 20 | Appendicularia | 278.3 | 199.2 | |||
Cnidaria | Hydrozoa | 2.3 | Others | 582.5 | 496.0 | |||
Mollusca | Pteropoda | Limacina | 0 | |||||
Others | Others | Larvae | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyomin, V.; Semiletov, I.; Chernykh, D.; Chertoprud, E.; Davydova, A.; Kirillov, N.; Konovalova, O.; Olshukov, A.; Osadchiev, A.; Polovtsev, I. Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition. Appl. Sci. 2022, 12, 11266. https://doi.org/10.3390/app122111266
Dyomin V, Semiletov I, Chernykh D, Chertoprud E, Davydova A, Kirillov N, Konovalova O, Olshukov A, Osadchiev A, Polovtsev I. Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition. Applied Sciences. 2022; 12(21):11266. https://doi.org/10.3390/app122111266
Chicago/Turabian StyleDyomin, Victor, Igor Semiletov, Denis Chernykh, Elena Chertoprud, Alexandra Davydova, Nikolay Kirillov, Olga Konovalova, Alexey Olshukov, Aleksandr Osadchiev, and Igor Polovtsev. 2022. "Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition" Applied Sciences 12, no. 21: 11266. https://doi.org/10.3390/app122111266
APA StyleDyomin, V., Semiletov, I., Chernykh, D., Chertoprud, E., Davydova, A., Kirillov, N., Konovalova, O., Olshukov, A., Osadchiev, A., & Polovtsev, I. (2022). Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition. Applied Sciences, 12(21), 11266. https://doi.org/10.3390/app122111266