Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = turbidimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1588 KB  
Article
Tailored Thermoresponsive Polyurethane Hydrogels: Structure–Property Relationships for Injectable Biomedical Applications
by Miriam Di Martino, Lucia Sessa, Federica Romano, Stefano Piotto and Simona Concilio
Polymers 2025, 17(17), 2350; https://doi.org/10.3390/polym17172350 - 29 Aug 2025
Cited by 1 | Viewed by 676
Abstract
Thermoresponsive hydrogels that undergo reversible sol-gel transitions near physiological temperatures are highly attractive for biomedical applications, such as injectable drug delivery and embolization therapies. In this study, a library of polyurethane-based hydrogels was synthesized via step-growth polymerization using polyethylene glycol (PEG) of varying [...] Read more.
Thermoresponsive hydrogels that undergo reversible sol-gel transitions near physiological temperatures are highly attractive for biomedical applications, such as injectable drug delivery and embolization therapies. In this study, a library of polyurethane-based hydrogels was synthesized via step-growth polymerization using polyethylene glycol (PEG) of varying molecular weights, different diisocyanates, and a series of functional diols derived from diethanolamine with increasing hydrophobicity. The resulting polymers exhibited sol–gel transition behaviors without the need for external crosslinkers, relying solely on non-covalent interactions. The thermal responsiveness was systematically investigated using UV–Vis turbidimetry, and the cloud point temperature (TCP) was found to be tunable within a range of 26–49 °C by modulating the monomer composition. Statistical modeling identified PEG molecular weight and diol structure as the primary determinants of TCP, while diisocyanate type and diol-to-PEG ratio had negligible effects. Only diethanolamine (DEA)-based polymers formed stable hydrogels above a critical gelation temperature (LCGT), attributed to enhanced intermolecular interactions via free amine groups. In vitro degradation assays confirmed good hydrolytic stability under physiological conditions over four weeks, with degradation profiles strongly influenced by the PEG chain length and hydrophobic content. These findings establish a structure–property framework for the rational design of injectable, thermoresponsive polyurethane hydrogels with tailored sol–gel behavior for biomedical applications. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 3rd Edition)
Show Figures

Graphical abstract

20 pages, 2317 KB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 745
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

18 pages, 3387 KB  
Article
Kringle-Dependent Inhibition of Plasmin-Mediated Fibrinolysis by Native and Citrullinated Core Histones
by Erzsébet Komorowicz, Anna Gurabi, András Wacha, László Szabó, Olivér Ozohanics and Krasimir Kolev
Int. J. Mol. Sci. 2025, 26(12), 5799; https://doi.org/10.3390/ijms26125799 - 17 Jun 2025
Viewed by 709
Abstract
The fibrin matrix of thrombi is intertwined with neutrophil extracellular traps (NETs) containing histones that render resistance to fibrinolysis. During NET formation, histones are citrullinated. Our study addresses the question of whether citrullination modifies the fibrin-stabilizing effects of histones. We studied the structure [...] Read more.
The fibrin matrix of thrombi is intertwined with neutrophil extracellular traps (NETs) containing histones that render resistance to fibrinolysis. During NET formation, histones are citrullinated. Our study addresses the question of whether citrullination modifies the fibrin-stabilizing effects of histones. We studied the structure and viscoelastic properties of fibrin formed in the presence of native or citrullinated H1 and core histones by scanning electron microscopy, clot permeation, and oscillation rheometry. The kinetics of fibrin formation and its dissolution were followed by turbidimetry and thromboelastometry. Co-polymerizing H1 with fibrin enhanced the mechanical strength of the clots, thickened the fibrin fibers, and enlarged the gel pores. In contrast, the addition of core histones resulted in a reduction in the fiber diameter, and the pores were only slightly larger, whereas the mechanical stability was not modified. Plasmin-mediated fibrinogen degradation was delayed by native and citrullinated core histones, but not by H1, and the action of des-kringle1-4-plasmin was not affected. Plasmin-mediated fibrinolysis was inhibited by native and citrullinated core histones, and this effect was moderated when the kringle domains of plasmin were blocked or deleted. These findings suggest that in NET-containing thrombi that are rich in core histones, alternative fibrinolytic enzymes lacking kringle domains are more efficient lytic agents than the classic plasmin-dependent fibrinolysis. Full article
(This article belongs to the Special Issue The Role of Extracellular Histones in Patho(physio)logical Hemostasis)
Show Figures

Figure 1

16 pages, 2349 KB  
Article
Extending the Three-Dimensional Culture of Adipocytes Through Surface Coatings
by Sheetal Chowdhury, Komal Beeton, Zacchaeus Wallace, Maggie Moore, Gene L. Bidwell and Amol V. Janorkar
Bioengineering 2025, 12(3), 266; https://doi.org/10.3390/bioengineering12030266 - 8 Mar 2025
Cited by 1 | Viewed by 1227
Abstract
To mimic the important features of progressing adiposity, in vitro adipose cell culture models must allow gradual intracellular fat accumulation in the three-dimensional (3D) arrangement of adipose-derived stem cells (ASCs) over a long-term culture period. Previously, elastin-like polypeptide (ELP) and polyethyleneimine (PEI) have [...] Read more.
To mimic the important features of progressing adiposity, in vitro adipose cell culture models must allow gradual intracellular fat accumulation in the three-dimensional (3D) arrangement of adipose-derived stem cells (ASCs) over a long-term culture period. Previously, elastin-like polypeptide (ELP) and polyethyleneimine (PEI) have been used to culture human adipose-derived stem cells (hASCs) as 3D spheroids and to differentiate them to adipocytes over a relatively long culture period of up to 5 weeks. In this study, to further enhance the spheroid adhesion properties, ELP was fused with Arginine–Glycine–Aspartic Acid (RGD) residues, known for their role as cell-attachment sites. This study aimed to assess whether the addition of RGD to the C-or N-terminus of ELP would impact the spheroid-forming ability of ELP-PEI coatings. ELP-RGD conjugates were produced using genetically modified Escherichia coli to express ELP-(RGD)3 and (RGD)3-ELP, followed by chemical conjugation with PEI. SDS gel electrophoresis, FTIR spectroscopy, and turbidimetry analyses revealed that ELP was conjugated with RGD without much alteration in the molecular weight, functional groups present, and transition temperature of ELP. The addition of RGD to ELP also did not affect the chemical conjugation capacity of ELP to PEI. We observed that the ELP-PEI coating formed slightly larger spheroids (61.8 ± 3.2 µm) compared to the ELP-(RGD)3-PEI and (RGD)3-ELP-PEI coatings (56.6 ± 3.0 and 53.4 ± 2.4 µm, respectively). Despite the size difference, ELP-(RGD)3-PEI coatings exhibited superior spheroid retention during media changes, with minimal spheroid loss. DNA assay results confirmed a significant decrease in the DNA concentration (p < 0.05) after the 20 media changes for spheroids cultured on the ELP-PEI coating, indicating spheroid loss. However, there was no significant difference in DNA concentration before and after 20 media changes for spheroids cultured on the ELP-(RGD)3-PEI and (RGD)3-ELP-PEI coatings (p > 0.05). These findings suggest that RGD incorporation does not hinder the initial spheroid formation ability of the ELP-PEI coating and enhances spheroid retention under dynamic culture conditions. Full article
Show Figures

Figure 1

14 pages, 2957 KB  
Article
A Novel Rapid Detection Method for Mycobacterium tuberculosis Based on Scattering-Light Turbidity Using Loop-Mediated Isothermal Amplification
by Meimei Zeng, Xinru Wang, Zifeng Tan, Wenyan Guo, Yan Deng, Song Li, Libo Nie, Nongyue He and Zhu Chen
Biosensors 2025, 15(3), 162; https://doi.org/10.3390/bios15030162 - 3 Mar 2025
Viewed by 1557
Abstract
The accurate detection of Mycobacterium tuberculosis (MTB) is a pressing challenge in the precise prevention and control of tuberculosis. Currently, the efficiency and accuracy of drug resistance detection for MTB are low, and cross-contamination is common, making it inadequate for clinical needs. This [...] Read more.
The accurate detection of Mycobacterium tuberculosis (MTB) is a pressing challenge in the precise prevention and control of tuberculosis. Currently, the efficiency and accuracy of drug resistance detection for MTB are low, and cross-contamination is common, making it inadequate for clinical needs. This study developed a rapid nucleic acid detection method for MTB based on scattering loop-mediated isothermal amplification (LAMP). Specific primers for the MTB-specific gene (Ag85B) were designed, and the LAMP reaction system was optimized using a self-developed scattering LAMP turbidimeter. Experimental results showed that the optimal reaction system included 1.5 µL of 100 mmol/L magnesium ions, 3.5 µL of 10 mmol/L dNTPs, 6 µL of 1.6 mol/L betaine, and a reaction temperature of 65 °C. The minimum detection limit was 12.40 ng/L, with the fastest detection time being approximately 10 min. The reaction exhibited good specificity, with no amplification bands for other pathogens. Twenty culture-positive samples and twenty culture-negative samples were tested in parallel; the accuracy of the positive group was 100%, the detection time was (24.9 ± 13 min), and there was no negative detection. This method features high detection efficiency, low cost, high accuracy, and effectively reduces cross-contamination, providing a new technology for the rapid clinical detection of MTB. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

13 pages, 1807 KB  
Article
Urinary Albumin-to-Creatinine Ratio (uACR) Point-of-Care (POC) Device with Seamless Data Transmission for Monitoring the Progression of Chronic Kidney Disease
by Artitaya Thiengsusuk, Napaporn Youngvises, Runtikan Pochairach, Rehab Osman Taha, Kridsada Sirisabhabhorn, Nadda Muhamad, Wanchai Meesiri, Wanna Chaijaroenkul and Kesara Na-Bangchang
Biosensors 2025, 15(3), 145; https://doi.org/10.3390/bios15030145 - 24 Feb 2025
Cited by 2 | Viewed by 3523
Abstract
Chronic kidney disease (CKD) continues to pose a critical global health challenge, making ongoing monitoring vital for effective management and preventing its progression to end-stage renal disease. The urinary albumin-to-creatinine ratio (uACR) stands out as a reliable biomarker. MyACR was developed and validated [...] Read more.
Chronic kidney disease (CKD) continues to pose a critical global health challenge, making ongoing monitoring vital for effective management and preventing its progression to end-stage renal disease. The urinary albumin-to-creatinine ratio (uACR) stands out as a reliable biomarker. MyACR was developed and validated as a novel point-of-care (POC) device for identifying and monitoring the progress of CKD. MyACR device operates using a colorimetric-based spectroscopy to quantify albumin and creatinine levels at 625 nm and 515 nm, respectively. Calculated uACR values were compared with results from the reference turbidimetry method using a dataset of 103 random urine samples from patients at high risk of advanced CKD. The device showed excellent performance in detecting severe nephropathy, with sensitivity, specificity, and accuracy of 100%, 100%, and 100%, respectively. The PPV (positive predictive value) was 100%, indicating perfect identification of patients with severe nephropathy (uACR > 300 mg/g creatinine). The NPV (negative predictive value) was 100%, suggesting a strong ability to rule out severe nephropathy, though a small risk of false negatives remained. Bland–Altman analysis confirmed a high level of agreement, with 96.11% (for all data) and 95.87% (for uACR > 300 mg/g creatinine) of MyACR measurements falling within the 95% confidence interval (−27 to +19). Correlation analysis revealed a significant alignment between MyACR and the reference method (r2 0.9720 to 0.9836). The ROC analysis suggested that combining uACR with the estimated glomerular filtration rate (eGFR) demonstrated strong predictive performance, yielding an area under the curve (AUC) of 0.933 (95% CI: 0.86–1.0). In conclusion, the MyACR device is a robust, affordable, and user-friendly tool for detecting nephropathy, showing performance comparable to the reference method. Its portability and cost-effectiveness make it particularly suitable for use in low-resource environments. Additionally, integrating uACR with eGFR enhances prognostic capabilities, offering a comprehensive approach to assessing kidney function and predicting CKD progression. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

17 pages, 2666 KB  
Article
When a Small Amount of Comonomer Is Enough: Tailoring the Critical Solution Temperature of LCST-Type Thermoresponsive Random Copolymers by PEG Methyl Ether Methacrylate with 1100 g/mol Molecular Weight
by György Kasza, Bence Sármezey, Dóra Fecske, Klára Verebélyi and Béla Iván
Materials 2025, 18(2), 372; https://doi.org/10.3390/ma18020372 - 15 Jan 2025
Viewed by 2780
Abstract
Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA1100) as a comonomer [...] Read more.
Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA1100) as a comonomer was investigated for its suitability for the CST adjustment of LCST-type polymers. Accordingly, a library of mPEGMA1100-based copolymers was established with varying compositions (XmPEGMA1100) using four main comonomers, namely di(ethylene glycol) ethyl ether acrylate, N-isopropyl acrylamide and methacrylamide, and mPEGMA300, with different CST values (cloud points, TCP, and clearing points, TCL, by turbidimetry). It was found that less than 20 mol% of the mPEGMA1100 in the copolymers is practically sufficient for tuning the CST in the entire measurable temperature range, i.e., up to 100 °C, regardless of the CST of the homopolymer of the main comonomer (CST0). Moreover, a predictive asymptotic model was developed based on the measured CST values, which strikingly revealed that the CSTs of mPEGMA1100-containing copolymers depend only on the two main parameters of these copolymers, XmPEGMA1100 and the CST of the homopolymer of the main comonomer (CST0), that is, CST = f(CST0, XmPEGMA1100). The revealed two-parameter relationship defines a surface in 3D plotting, and it is applicable to determine the CST of copolymers in advance for a given composition or to define the suitable composition for a required CST value. These unprecedented results on the dependence of CSTs on two major well-defined parameters enable to design a variety of novel macromolecular structures with tailored thermoresponsive properties. Full article
(This article belongs to the Special Issue Applied Stimuli-Responsive Polymer Based Materials)
Show Figures

Figure 1

11 pages, 768 KB  
Article
Impact of Likelihood Ratios of Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide Antibody in Clinical Diagnosis of Rheumatoid Arthritis by Two Available Platforms
by Juan Irure-Ventura, María Díaz-Toledo, Noelia Palazuelos-Cayón and Marcos López-Hoyos
Diagnostics 2025, 15(2), 135; https://doi.org/10.3390/diagnostics15020135 - 8 Jan 2025
Cited by 1 | Viewed by 1607
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, characterized by an articular and extra-articular involvement, where autoantibodies, such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPAs), are important biomarkers for the diagnosis. Autoantibody determination can be [...] Read more.
Background/Objectives: Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, characterized by an articular and extra-articular involvement, where autoantibodies, such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibodies (ACPAs), are important biomarkers for the diagnosis. Autoantibody determination can be carried out using different assays. However, the results obtained are usually expressed in arbitrary units that are not comparable. Therefore, the aim of this study is to improve clinical interpretation of RF and ACPA test results using the likelihood ratio (LR). Methods: RF and ACPA titers were analyzed by turbidimetry and chemiluminescence using Optilite and BIO-FLASH systems, respectively, in 781 samples from patients with RA and in 1970 controls. Results: The higher the antibody titer of RF or ACPA, the higher the LR for RA. The definition of test result interval-specific LR based on predefined specificities for antibody levels provides more information than the use of the cut-off set by the manufacturer for each antibody. Conclusions: The LR for RA increased with an increasing antibody level. In addition, the use of test result interval-specific LR allows better clinical interpretation for RF and ACPA assays compared to the traditional idea of interpreting antibody results in a dichotomous manner, such as negative or positive. Full article
(This article belongs to the Special Issue Immune-Mediated Diseases: Diagnosis and Management)
Show Figures

Figure 1

12 pages, 4468 KB  
Article
Characterization of the Interaction of Human γS Crystallin with Metal Ions and Its Effect on Protein Aggregation
by Reinier Cardenas, Arline Fernandez-Silva, Vanesa Ramirez-Bello and Carlos Amero
Biomolecules 2024, 14(12), 1644; https://doi.org/10.3390/biom14121644 - 21 Dec 2024
Cited by 1 | Viewed by 1155
Abstract
Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation. [...] Read more.
Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation. However, reports on zinc are contradictory. To characterize the process of metal ion binding and subsequent HγS crystallin aggregation, we performed dynamic light scattering, turbidimetry, isothermal titration calorimetry, fluorescence, and nuclear magnetic resonance experiments. The data show that both metal ions have multiple binding sites and promote aggregation. Zinc interacts mainly with the N-terminal domain, inducing small conformational changes, while copper interacts with both domains and induces unfolding, exposing the tryptophan residues to the solvent. Our work provides insight into the mechanisms of metal-induced aggregation at one of the lowest doses that appreciably promote aggregation over time. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

20 pages, 4625 KB  
Article
Effect of Degree of Substitution and Polymer Ratio on the Structure of Chitosan: Carboxymethyl Starch (Bio)Polyelectrolyte Complexes
by David Castro, Valentina Brovina, Mikhail Litvinov and Aleksandr Podshivalov
Polymers 2024, 16(24), 3539; https://doi.org/10.3390/polym16243539 - 19 Dec 2024
Cited by 1 | Viewed by 1781
Abstract
In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.36). From these samples, (bio)polyelectrolyte complexes ((bio)PECs) were obtained with chitosan (Chit) by the mixing of individual solutions of [...] Read more.
In this work, three carboxymethyl starches (CMS) were obtained by the two-step reaction process of carboxymethylation with different degrees of substitution (0.16, 0.33, and 0.36). From these samples, (bio)polyelectrolyte complexes ((bio)PECs) were obtained with chitosan (Chit) by the mixing of individual solutions of polymers (0.25 wt.%) at different volume ratios. The effect of the biopolymer and ionized groups of z ratios, pH, and degree of substitution of CMS in the formation of PEC were evaluated by turbidimetry and dynamic light scattering. The results showed that increasing the amount of CMS samples (ratio of z) led to an increase in the efficiency of the formation of (bio)PEC using CMS with a high DS value. Using the turbidimetry method for the chitosan and CMS mixtures, it was observed that the formation of (bio)PEC is divided into four transition zones delimited by pH transition points, and the stoichiometric complexation (z = 1) is achieved at a pH that displayed morphological changes “pHmorph”, which is a single point for Chit:CMS 1, and for Chit:CMS 2 and Chit:CMS 3, this is a range of 4.9–6.4 and 4.3–6.4, respectively. Analysis of the structural properties of the structures of (bio)PECs by dynamic light scattering was characterized by monomodal distribution, and the main observed effect was associated with an increase in the value of Davg with an increase in the ratio of Chit:CMS. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

12 pages, 1538 KB  
Article
Application of the Chitooligosaccharides and Fluorescence Polarization Technique for the Assay of Active Lysozyme in Hen Egg White
by Liliya I. Mukhametova, Dmitry O. Zherdev, Sergei A. Eremin, Pavel A. Levashov, Hans-Christian Siebert, Yury E. Tsvetkov, Olga N. Yudina, Vadim B. Krylov and Nikolay E. Nifantiev
Biomolecules 2024, 14(12), 1589; https://doi.org/10.3390/biom14121589 - 12 Dec 2024
Cited by 2 | Viewed by 1280
Abstract
This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method [...] Read more.
This study describes the applicability of the fluorescence polarization assay (FPA) based on the use of FITC-labeled oligosaccharide tracers of defined structure for the measurement of active lysozyme in hen egg white. Depending on the oligosaccharide chain length of the tracer, this method detects both the formation of the enzyme-to-tracer complex (because of lectin-like, i.e., carbohydrate-binding action of lysozyme) and tracer splitting (because of chitinase activity of lysozyme). Evaluation of the fluorescence polarization dynamics enables simultaneous measurement of the chitinase and lectin activities of lysozyme, which is crucial for its detection in complex biological systems. Hen egg white lysozyme (HEWL), unlike human lysozyme (HL), formed a stable complex with the chitotriose tracer that underwent no further transformations. This fact allows for easy measurement of the carbohydrate-binding activity of the HEWL. The results of the lysozyme activity measurement for hen egg samples obtained through the FPA correlated with the results obtained using the traditional turbidimetry method. The FPA does not have the drawbacks of turbidimetry, which are associated with the need to use bacterial cells that cannot be precisely standardized. Additionally, FPA offers advantages such as rapid analysis, the use of compact equipment, and standardized reagents. Therefore, the new express technique for measuring the lysozyme activity is applicable for evaluating the complex biomaterial, including for the purposes of food product quality control. Full article
Show Figures

Graphical abstract

17 pages, 3150 KB  
Article
Potentiality of Antibacterial Gels for the Prophylactic Coating of Hernia Repair Prosthetic Materials
by Bárbara Pérez-Köhler, Selma Benito-Martínez, Celia Rivas-Santos, Verónica Gómez-Gil, Francisca García-Moreno and Gemma Pascual
Gels 2024, 10(11), 687; https://doi.org/10.3390/gels10110687 - 24 Oct 2024
Cited by 2 | Viewed by 1690
Abstract
Prosthetic mesh infection constitutes one of the major postsurgical complications following abdominal hernia repair. Antibacterial coatings represent a prophylactic strategy to reduce the risk of infection. This study assessed the in vitro response of two antibacterial gels made of 1% carboxymethylcellulose (CMC) functionalized [...] Read more.
Prosthetic mesh infection constitutes one of the major postsurgical complications following abdominal hernia repair. Antibacterial coatings represent a prophylactic strategy to reduce the risk of infection. This study assessed the in vitro response of two antibacterial gels made of 1% carboxymethylcellulose (CMC) functionalized with an antiseptic (chlorhexidine, CHX) or an antibiotic (rifampicin, RIF), developed for the coating of polypropylene (PP) meshes for hernia repair. Fragments of a lightweight PP mesh (1 cm2) presoaked in the unloaded or drug-loaded CMC (0.05% CHX; 0.13 mg/mL RIF) were challenged with 106 CFU/mL Staphylococcus aureus (Sa) and methicillin-resistant S. aureus (MRSA). Agar diffusion tests, sonication, turbidimetry, crystal violet staining, scanning electron microscopy and cell viability assays (fibroblasts, mesothelial cells) were performed to evaluate the response of the gels. Both compounds—especially the RIF-loaded gel—exerted a biocidal effect against gram-positive bacteria, developing wide inhibition halos, precluding adhesion to the mesh surface, and hampering bacterial survival in culture. The antibiotic gel proved innocuous, while lower viability was found in cells exposed to the antiseptic (p < 0.05). Together with their fast, affordable, convenient processing and easy application, the results suggest the potential effectiveness of these drug-loaded CMC gels in providing meshes with an antibacterial coating exhibiting great biocide performance. Full article
(This article belongs to the Special Issue Gel-Based Novel Wound Dressing)
Show Figures

Graphical abstract

13 pages, 11023 KB  
Article
Antibacterial Activity of Superhydrophobic-SiO2 Coatings to Inhibit the Growth of Escherichia coli and Staphylococcus aureus
by Betania Sánchez-Santamaria, Delfino Cornejo-Monroy, Imelda Olivas-Armendáriz, José Saúl Arias-Cerón, Alfredo Villanueva-Montellano, Elsa Ordoñez-Casanova, José Omar Dávalos-Ramírez, Erwin Adán Martínez-Gómez and Jesús Manuel Jaquez-Muñoz
Coatings 2024, 14(9), 1211; https://doi.org/10.3390/coatings14091211 - 20 Sep 2024
Cited by 5 | Viewed by 2824
Abstract
The emergence of superhydrophobic antibacterial materials represents a promising approach to maintaining surface cleanliness and hygiene by effectively preventing bacterial adhesion. This research outlines the synthesis of a superhydrophobic coating with anti-adhesion and bacteriostatic properties, utilizing silica nanoparticles (SiO2 NPs) modified with [...] Read more.
The emergence of superhydrophobic antibacterial materials represents a promising approach to maintaining surface cleanliness and hygiene by effectively preventing bacterial adhesion. This research outlines the synthesis of a superhydrophobic coating with anti-adhesion and bacteriostatic properties, utilizing silica nanoparticles (SiO2 NPs) modified with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFDTES). Transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy were conducted to analyze the coating’s morphology and surface characteristics. The coating was applied to glass substrates using the spray coating method, and the number of layers was varied to evaluate its antibacterial and bacteriostatic properties. These properties were measured using turbidimetry and inhibition halo techniques. Additionally, the durability of the coatings was assessed by exposing them to outdoor conditions for 35 days. This study aimed to evaluate the antibacterial and bacteriostatic capacities of the superhydrophobic coating, along with its resistance to outdoor weathering. The results indicate that a superhydrophobic coating with a contact angle ≥ 150° and a sliding angle ≤ 10° was successfully synthesized using SiO2 NPs smaller than 10 nm, modified with PFDTES. The coating demonstrated an ability to inhibit bacterial growth by preventing the adhesion of bacteria such as Escherichia coli and Staphylococcus aureus. Furthermore, the number of coating layers significantly influenced its bacteriostatic efficacy. The coating also exhibited strong durability under outdoor conditions. These findings highlight the potential application of superhydrophobic coatings for the prevention of bacterial adhesion and growth in environments where such contamination poses risks. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bioactive Coatings)
Show Figures

Figure 1

9 pages, 806 KB  
Article
Assessment of Platelet Aggregation and Thrombin Generation in Patients with Familial Chylomicronemia Syndrome Treated with Volanesorsen: A Cross-Sectional Study
by Ilenia Lorenza Calcaterra, Renata Santoro, Nicoletta Vitelli, Ferdinando Cirillo, Guido D’Errico, Cornelia Guerrino, Giovanna Cardiero, Maria Donata Di Taranto, Giuliana Fortunato, Gabriella Iannuzzo and Matteo Nicola Dario Di Minno
Biomedicines 2024, 12(9), 2017; https://doi.org/10.3390/biomedicines12092017 - 4 Sep 2024
Cited by 2 | Viewed by 1435
Abstract
Background: The antisense oligonucleotide against APOC3 mRNA volanesorsen was recently introduced to treat Familial Chylomicronemia Syndrome (FCS). Cases of decreased platelet count are reported among patients treated with volanesorsen. The aim of the study was to evaluate platelet function and thrombin generation (TG) [...] Read more.
Background: The antisense oligonucleotide against APOC3 mRNA volanesorsen was recently introduced to treat Familial Chylomicronemia Syndrome (FCS). Cases of decreased platelet count are reported among patients treated with volanesorsen. The aim of the study was to evaluate platelet function and thrombin generation (TG) assessment in FCS patients receiving volanesorsen. We performed a cross-sectional study on FCS patients treated with volanesorsen. Methods: Changes in platelet count PLC were assessed from baseline to Tw12 and Tw36. To assess TG, samples were processed by CAT (with PPP-reagent LOW). The results were expressed by the thrombogram graphic (thrombin variation over time); LagTime; endogenous thrombin potential (ETP); peak; time to reach peak (ttpeak), StartTail and Velocity Index. Platelet aggregation was assessed by testing different agonists using the turbidimetry method. Results: Four FCS patients and four matched healthy controls were included in the present study. Changes in PLC were 30% at Tw12 and 34% at Tw36. Thrombin generation results showed values in the normal range (for patients and controls, respectively, LagTime:10.42 ± 4.40 and 9.25 ± 0.99; ttPeak:14.33 ± 4.01 and 13.10 ± 0.67; StartTail: 32.13 ± 3.54 and 29.46 ± 1.69; Velocity Index: 20.21 ± 3.63 and 33.05 ± 13.21; ETP: 599.80 ± 73.47 and 900.2 ± 210.99; peak value: 76.84 ± 1.07 and 123.30 ± 39.45) and no significant difference between cases and controls. Platelet aggregation test showed values in range, with no significant difference compared to healthy controls. Conclusions: Our study showed for the first time that no significant changes in general hemostasis assessed by TG and in platelet function were observed in FCS patients receiving volanesorsen. Full article
Show Figures

Figure 1

13 pages, 8065 KB  
Article
Narrow Range of Coagulation of Ion Associates of Poly(styrene sulfonate) with Alcian Blue Dye
by Dorota Ziółkowska, Alexander Shyichuk and Iryna Shyychuk
Molecules 2024, 29(17), 4017; https://doi.org/10.3390/molecules29174017 - 25 Aug 2024
Cited by 2 | Viewed by 1117
Abstract
The ionic association of Alcian Blue dye with poly(styrene sulfonate) in aqueous solutions was studied for analytical purposes. The quadruple-charged cationic dye, Alcian Blue, was found to form colloidal ionic associates with poly(styrene sulfonate) anions. When the amounts of opposite charges are nearly [...] Read more.
The ionic association of Alcian Blue dye with poly(styrene sulfonate) in aqueous solutions was studied for analytical purposes. The quadruple-charged cationic dye, Alcian Blue, was found to form colloidal ionic associates with poly(styrene sulfonate) anions. When the amounts of opposite charges are nearly equal, the resulting ionic associates lose solubility and coagulate rapidly. This effect occurs within a narrow range of the ratio of poly(styrene sulfonate) to Alcian Blue. At the point of charge equivalence, the zeta potential of the resulting particles is zero, which facilitates flocculation. The resulting flocs enlarge to approximately 0.05–0.5 mm and precipitate rapidly. FTIR spectroscopy confirms that the precipitate contains both poly(styrene sulfonate) and Alcian Blue dye. Sedimentation kinetics was studied in detail using scanning turbidimetry. Due to the high molar absorbance of the Alcian Blue dye at 600 nm, the point of equimolar charge ratio was precisely determined by spectrophotometry. The complete precipitation of ionic associates occurs when the amount of poly(styrene sulfonate) ranges from 1.4 to 1.55 mmol per 1 g of Alcian Blue dye. Such a narrow coagulation range allows for the use of the studied effect for quantitative analysis. Both Alcian Blue dye and poly(styrene sulfonate) can be quantified if one of their concentrations is known. Full article
(This article belongs to the Special Issue Molecular Insights into Soft Materials)
Show Figures

Figure 1

Back to TopTop