Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages
Abstract
:1. Introduction
2. The Need for Biopreservation
3. Role of Probiotics in the Food Industry
Genus | Probiotic/Potential Probiotic Strain | Food Matrix | Reference |
---|---|---|---|
Lactobacillus | Lactobacillus rhamnosus GG | Kefir | [36] |
Lactobacillus casei ATCC 393 | Fermented milk | [37] | |
Lactobacillus casei Q14 | Yoghurt | [38] | |
Lactobacillus casei 01 | Sheep milk ice cream | [39] | |
Lactobacillus paracasei LBC-81 | Maize-based beverage | [40] | |
Lactobacillus plantarum L7 | Rice-based fermented beverage | [41] | |
Lactobacillus acidophilus NCIMB 8821 | Oat flour and barley malt beverage | [42] | |
Lactobacillus reuteri NCIMB 11951 | Oat flour and barley malt beverage | [42] | |
Lactobacillus fermentum ATCC 9338 | Prickly pear juice | [43] | |
Lactobacillus fermentum KKL1 | Rice-based fermented beverage | [44] | |
Bifidobacterium | B. longum subsp. longum YS108R | Fermented milk | [45] |
B. animalis | Milk supplemented with seaweed extract | [46] | |
B. breve | Probiotic-fermented blended juices | [47] | |
Saccharomyces | Saccharomyces cerevisiae KU200284 | Kefir | [48] |
Pediococcus | Pediococcus pentosaceus Lbf2 | Soursop juice | [49] |
Pediococcus acidilactici CE51 | Probiotic orange juice | [50] | |
Pediococcus pentosaceus | Fermented soybean milk | [51] | |
Propionibacterium | Propionibacterium freudenreichii subsp. shermanii | Probiotic feta cheese | [52] |
Streptococcus | Streptococcus thermophilus | Probiotic chocolate, novel probiotic fermented oat flour | [53,54] |
4. Biopreservative Properties of Probiotics
5. Probiotic Applications for Improved Shelf Life in Vegetables, Fruits and Other Miscellaneous Plant-Based Foods
5.1. Fruits
5.1.1. Melons
5.1.2. Apple
5.1.3. Pears
5.1.4. Oranges
5.1.5. Other Fruits
5.2. Vegetables
5.3. Plant-Based Milk Analogues and Other Miscellaneous Products
5.4. Miscellaneous Food Items
6. Future Insights
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 2013, 6, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makinen, K.; Berger, B.; Bel-Rhlid, R.; Ananta, E. Science and technology for the mastership of probiotic applications in food products. J. Biotechnol. 2012, 162, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.; Vinderola, G.; Charalampopoulos, D.; Lebeer, S.; Sanders, M.E.; Grimaldi, R. Applying probiotics and prebiotics in new delivery formats—Is the clinical evidence transferable? Trends Food Sci. Technol. 2021, 112, 495–506. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Rzepkowska, A.; Szydłowska, A.; Kołozyn-Krajewska, D. Trends and Possibilities of the Use of Probiotics in Food Production. In Alternative and Replacement Foods; Elsevier: Amsterdam, The Netherlands, 2018; Volume 17, pp. 65–94. ISBN 9780128114988. [Google Scholar]
- Dhundale, V.; Hemke, V.; Desai, D.; Dhundale, P. Evaluation and Exploration of Lactic Acid Bacteria for Preservation and Extending the Shelf Life of Fruit. Int. J. Fruit Sci. 2018, 18, 355–368. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef]
- CDC. What Is a Foodborne Disease Outbreak and Why Do They Occur. Available online: http://www.cdc.gov/foodsafety/facts.html#whatisanoutbreak (accessed on 19 September 2022).
- McFarland, L.V. From yaks to yogurt: The history, development, and current use of probiotics. Clin. Infect. Dis. 2015, 60, S85–S90. [Google Scholar] [CrossRef] [Green Version]
- Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 2018, 76, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Leahy, S.C.; Higgins, D.G.; Fitzgerald, G.F.; Van Sinderen, D. Getting better with bifidobacteria. J. Appl. Microbiol. 2005, 98, 1303–1315. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Zhaoxin, L.; Jianhao, Z.; Abid, M.; Khan, K.U.R.; Korma, S.A.; Alghamdi, M.A.; El-Saadony, M.T.; Abd El-Hack, M.E.; et al. Probiotic-Based Bacteriocin: Immunity Supplementation Against Viruses. An Updated Review. Front. Microbiol. 2022, 13, 876058. [Google Scholar] [CrossRef]
- Nath, S.; Chowdhury, S.; Dora, K.C.; Sarkar, S. Role Of Biopreservation In Improving Food Safety And Storage. Int. J. Eng. Res. Appl. 2014, 4, 26–32. [Google Scholar]
- Bourdichon, F.; Arias, E.; Babuchowski, A.; Bückle, A.; Dal Bello, F.; Dubois, A.; Fontana, A.; Fritz, D.; Kemperman, R.; Laulund, S.; et al. The forgotten role of food cultures. FEMS Microbiol. Lett. 2021, 368, fnab085. [Google Scholar] [CrossRef]
- Oluk, C.A.; Karaca, O.B. The Current Approaches and Challenges of Biopreservation. In Food Safety and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 565–597. [Google Scholar]
- García, P.; Rodríguez, L.; Rodríguez, A.; Martínez, B. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci. Technol. 2010, 21, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Sharif, Z.; Mustapha, F.; Jai, J.; Mohd Yusof, N.; Zaki, N. Review on methods for preservation and natural preservatives for extending the food longevity. Chem. Eng. Res. Bull. 2017, 19, 145. [Google Scholar] [CrossRef] [Green Version]
- Campêlo, M.C.S.; Medeiros, J.M.S.; Silva, J.B.A. Natural products in food preservation. Int. Food Res. J. 2019, 26, 41–46. [Google Scholar]
- Sofos, J.N.; Bacon, R.T. Characteristics of biological hazards in foods. In Food saftety handbook; Schmidt, R.H., Rodrick, G.E., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 157–195. ISBN 0471210641. [Google Scholar]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A Review on Food Preservation: Methods, harmful effects and better alternatives. Asian J. Pharm. Pharmacol. 2017, 3, 193–199. [Google Scholar]
- Silva, M.M.; Lidon, F.C. Food preservatives—An overview on applications and side effects. Emir. J. Food Agric. 2016, 28, 366–373. [Google Scholar] [CrossRef]
- Gomes, B.C.; Winkelströter, L.K.; Dos Reis, F.B.; De Martinis, E.C.P. Biopreservation. In Safety of Meat and Processed Meat; Toldrá, F., Ed.; Springer: New York, NY, USA, 2009; pp. 297–312. [Google Scholar]
- Mariotti, F. Vegetarian and Plant-Based Diets in Health and Disease Prevention, 1st ed.; Mariotti, F., Ed.; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128039694. [Google Scholar]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef] [Green Version]
- Žuntar, I.; Petric, Z.; Kovacevíc, D.B.; Putnik, P. Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods 2020, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Ananou, S.; Maqueda, M.; Martínez-Bueno, M.; Valdivia, E. Biopreservation, an ecological approach to improve the safety and shelf-life of foods. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 475–486. [Google Scholar]
- Bimbo, F.; Bonanno, A.; Nocella, G.; Viscecchia, R.; Nardone, G.; De Devitiis, B.; Carlucci, D. Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite 2017, 113, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzaal, M.; Saeed, F.; Arshad, M.U.; Nadeem, M.T.; Saeed, M.; Tufail, T. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob. Proteins 2019, 11, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Ateeq, H.; Ahmed, A.; Ahmad, A.; Tufail, T.; Ismail, Z.; Anjum, F.M. Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Sci. Nutr. 2020, 8, 2739–2747. [Google Scholar] [CrossRef] [Green Version]
- Ozyurt, V.H.; Ötles, S. Properties of probiotics and encapsulated probiotics in food. Acta Sci. Pol. Technol. Aliment. 2014, 13, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef]
- Ryan, J.; Hutchings, S.C.; Fang, Z.; Bandara, N.; Gamlath, S.; Ajlouni, S.; Ranadheera, C.S. Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. Int. J. Dairy Technol. 2020, 73, 182–190. [Google Scholar] [CrossRef]
- Mitra, S.; Ghosh, B.C. Quality characteristics of kefir as a carrier for probiotic Lactobacillus rhamnosus GG. Int. J. Dairy Technol. 2020, 73, 384–391. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Gamba, R.R.; Nagai, E.; Suzuki, T.; Koyanagi, T.; Enomoto, T. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Qu, L.; Ren, J.; Huang, L.; Pang, B.; Liu, X.; Liu, X.; Li, B.; Shan, Y. Antidiabetic Effects of Lactobacillus casei Fermented Yogurt through Reshaping Gut Microbiota Structure in Type 2 Diabetic Rats. J. Agric. Food Chem. 2018, 66, 12696–12705. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Silva, H.L.A.; Esmerino, E.A.; Rocha, R.S.; Moraes, J.; Carmo, M.A.V.; Azevedo, L.; Camps, I.; Abud, Y.K.D.; Sant’Anna, C.; et al. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem. 2018, 246, 464–472. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Saha, S.; Sukumaran, V.; Park, S.C. Use of a potential probiotic, Lactobacillus plantarum L7, for the preparation of a rice-based fermented beverage. Front. Microbiol. 2018, 9, 473. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Panda, S.K.; Behera, S.K.; Witness Qaku, X.; Sekar, S.; Ndinteh, D.T.; Nanjundaswamy, H.M.; Ray, R.C.; Kayitesi, E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum—ATCC 9338. LWT 2017, 75, 453–459. [Google Scholar] [CrossRef]
- Ghosh, K.; Ray, M.; Adak, A.; Halder, S.K.; Das, A.; Jana, A.; Parua (Mondal), S.; Vágvölgyi, C.; Das Mohapatra, P.K.; Pati, B.R.; et al. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour. Technol. 2015, 188, 161–168. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, H.; Yan, X.; Zhao, S. Preparation of a probiotic rice tablet: Sensory evaluation and antioxidant activity during gastrointestinal digestion. LWT 2020, 124, 108911. [Google Scholar] [CrossRef]
- Del Olmo, A.; Picon, A.; Nuñez, M. Probiotic dynamics during the fermentation of milk supplemented with seaweed extracts: The effect of milk constituents. LWT 2019, 107, 249–255. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Lee, N.K.; Yi, S.H.; Hong, S.P.; Paik, H.D. Short communication: Physicochemical features and microbial community of milk kefir using a potential probiotic Saccharomyces cerevisiae KU200284. J. Dairy Sci. 2019, 102, 10845–10849. [Google Scholar] [CrossRef] [PubMed]
- Akpeji, S.; Adebayo-Tayo, B.; Sanusi, J.; Alao, S. Production and Properties of Probioticic Soursop Juice Using Pediococcus pentosaceus LBF2 as Starter. Int. J. Biochem. Res. Rev. 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cristiny de Oliveira Vieira, K.; Da Silva Ferreira, C.; Toso Bueno, E.B.; De Moraes, Y.A.; Campagnolo Gonçalves Toledo, A.C.; Nakagaki, W.R.; Pereira, V.C.; Winkelstroter, L.K. Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. Lwt 2020, 130, 109637. [Google Scholar] [CrossRef]
- Hu, D.; Wu, J.; Jin, L.; Yuan, L.; Li, J.; Chen, X.; Yao, J. Evaluation of Pediococcus pentosaceus strains as probiotic adjunct cultures for soybean milk post-fermentation. Food Res. Int. 2021, 148, 110570. [Google Scholar] [CrossRef]
- Angelopoulou, A.; Alexandraki, V.; Georgalaki, M.; Anastasiou, R.; Manolopoulou, E.; Tsakalidou, E.; Papadimitriou, K. Production of probiotic Feta cheese using Propionibacterium freudenreichii subsp. shermanii as adjunct. Int. Dairy J. 2017, 66, 135–139. [Google Scholar] [CrossRef]
- Eor, J.Y.; Tan, P.L.; Lim, S.M.; Choi, D.H.; Yoon, S.M.; Yang, S.Y.; Kim, S.H. Laxative effect of probiotic chocolate on loperamide-induced constipation in rats. Food Res. Int. 2019, 116, 1173–1182. [Google Scholar] [CrossRef]
- Duru, K.C.; Kovaleva, E.G.; Danilova, I.G.; Belousova, A.V. Production and assessment of novel probiotic fermented oat flour enriched with isoflavones. LWT 2019, 111, 9–15. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [Green Version]
- Favaro, L.; Barretto Penna, A.L.; Todorov, S.D. Bacteriocinogenic LAB from cheeses—Application in biopreservation? Trends Food Sci. Technol. 2015, 41, 37–48. [Google Scholar] [CrossRef]
- Likotrafiti, E.; Valavani, P.; Argiriou, A.; Rhoades, J. In vitro evaluation of potential antimicrobial synbiotics using Lactobacillus kefiri isolated from kefir grains. Int. Dairy J. 2015, 45, 23–30. [Google Scholar] [CrossRef]
- Valdés-Varela, L.; Hernández-Barranco, A.M.; Ruas-Madiedo, P.; Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 2016, 7, 738. [Google Scholar] [CrossRef]
- Russo, P.; Peña, N.; de Chiara, M.L.V.; Amodio, M.L.; Colelli, G.; Spano, G. Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Res. Int. 2015, 77, 762–772. [Google Scholar] [CrossRef]
- Trias, R.; Bañeras, L.; Badosa, E.; Montesinos, E. Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Int. J. Food Microbiol. 2008, 123, 50–60. [Google Scholar] [CrossRef]
- Leverentz, B.; Conway, W.S.; Janisiewicz, W.; Abadias, M.; Kurtzman, C.P.; Camp, M.J. Biocontrol of the food-borne pathogens Listeria monocytogenes and Salmonella enterica serovar poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Appl. Environ. Microbiol. 2006, 72, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Ukuku, D.O.; Fett, W.F.; Sapers, G.M. Inhibition of Listeria monocytogenes by native microflora of whole cantaloupe. J. Food Saf. 2004, 24, 129–146. [Google Scholar] [CrossRef]
- Abadias, M.; Altisent, R.; Usall, J.; Torres, R.; Oliveira, M.; Viñas, I. Biopreservation of fresh-cut melon using the strain Pseudomonas graminis CPA-7. Postharvest Biol. Technol. 2014, 96, 69–77. [Google Scholar] [CrossRef]
- CDC. Timeline of Events: Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. Available online: https://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/timeline.html (accessed on 12 September 2022).
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Tabanelli, G.; Montanari, C.; Gardini, F.; Lanciotti, R. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb’s lettuce. Food Microbiol. 2015, 47, 74–84. [Google Scholar] [CrossRef]
- Rößle, C.; Auty, M.A.E.; Brunton, N.; Gormley, R.T.; Butler, F. Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innov. Food Sci. Emerg. Technol. 2010, 11, 203–209. [Google Scholar] [CrossRef]
- Alegre, I.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food Microbiol. 2011, 28, 59–66. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Abadias, M.; Anguera, M.; Sabata, J.; Viñas, I. Antagonistic effect of probiotic bacteria against foodborne pathogens on fresh-cut pear. LWT—Food Sci. Technol. 2017, 81, 243–249. [Google Scholar] [CrossRef]
- Iglesias, M.B.; Echeverría, G.; Viñas, I.; López, M.L.; Abadias, M. Biopreservation of fresh-cut pear using Lactobacillus rhamnosus GG and effect on quality and volatile compounds. LWT—Food Sci. Technol. 2018, 87, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, M.B.; Viñas, I.; Colás-Medà, P.; Collazo, C.; Serrano, J.C.E.; Abadias, M. Adhesion and invasion of Listeria monocytogenes and interaction with Lactobacillus rhamnosus GG after habituation on fresh-cut pear. J. Funct. Foods 2017, 34, 453–460. [Google Scholar] [CrossRef]
- Pratush, A.; Gupta, A.; Kumar, A.; Vyas, G. Application of Purified Bacteriocin Produced By Lactococcus Lactis Ap2 As Food Biopreservative in Acidic Foods. Ann. Food Sci. Technol. 2012, 13, 82–87. [Google Scholar]
- Luz, C.; D’Opazo, V.; Quiles, J.M.; Romano, R.; Mañes, J.; Meca, G. Biopreservation of tomatoes using fermented media by lactic acid bacteria. LWT 2020, 130, 109618. [Google Scholar] [CrossRef]
- Skariyachan, S.; Govindarajan, S. Biopreservation potential of antimicrobial protein producing Pediococcus spp. towards selected food samples in comparison with chemical preservatives. Int. J. Food Microbiol. 2019, 291, 189–196. [Google Scholar] [CrossRef]
- Canaviri Paz, P.; Janny, R.J.; Håkansson, Å. Safeguarding of quinoa beverage production by fermentation with Lactobacillus plantarum DSM 9843. Int. J. Food Microbiol. 2020, 324, 108630. [Google Scholar] [CrossRef]
- Bruno, L.M.; Lima, J.R.; Wurlitzer, N.J.; Rodrigues, T.C. Non-dairy cashew nut milk as a matrix to deliver probiotic bacteria. Food Sci. Technol. 2019, 40, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Jang, W.J.; Lee, E.W.; Kong, I.S. β-glucooligosaccharides derived from barley β-glucan promote growth of lactic acid bacteria and enhance nisin Z secretion by Lactococcus lactis. LWT 2020, 122, 109014. [Google Scholar] [CrossRef]
- Nissen, L.; di Carlo, E.; Gianotti, A. Prebiotic potential of hemp blended drinks fermented by probiotics. Food Res. Int. 2020, 131, 109029. [Google Scholar] [CrossRef]
- Björkroth, K.J.; Vandamme, P.; Korkeala, H.J. Identification and characterization of Leuconostoc carnosum, associated with production and spoilage of vacuum-packaged, sliced, cooked ham. Appl. Environ. Microbiol. 1998, 64, 3313–3319. [Google Scholar] [CrossRef] [Green Version]
- Monika, K.; Malik, T.; Gehlot, R.; Rekha, K.; Kumari, A.; Sindhu, R.; Rohilla, P. Antimicrobial Property of Probiotics. Environ. Conserv. J. 2021, 22, 33–48. [Google Scholar] [CrossRef]
- Abdelazez, A.; Abdelmotaal, H.; Zhu, Z.-T.; Fang-Fang, J.; Sami, R.; Zhang, L.-J.; Rahman Al-Tawaha, A.; Meng, X.-C. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 2018, 12, 16–27. [Google Scholar] [CrossRef]
- Axel, C.; Zannini, E.; Arendt, E.K. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit. Rev. Food Sci. Nutr. 2017, 57, 3528–3542. [Google Scholar] [CrossRef]
- Rahman, M.A.; Talukder, A.; Das, S.C.; Hossain, I.; Devnath, P.; Bhowmik, S.; Uddin, M.S.; Rahman, M.M. Lactobacillus xylosus isolated from butter showed potentiality to be used as probiotic and biopreservative. Asian J. Med. Biol. Res. 2020, 6, 27–37. [Google Scholar] [CrossRef]
- Somashekaraiah, R.; Shruthi, B.; Deepthi, B.V.; Sreenivasa, M.Y. Probiotic properties of lactic acid bacteria isolated from neera: A naturally fermenting coconut palm nectar. Front. Microbiol. 2019, 10, 1382. [Google Scholar] [CrossRef]
- Kostov, G.; Denkova-Kostova, R.; Denkova, Z.; Nenov, N.; Shopska, V.; Dzhivoderova-Zarcheva, M.; Teneva, D.; Goranov, B.; Petelkov, I.; Bouarab, L.; et al. Biopreservation of emulsified food and cosmetic products by synergistic action of probiotics and plant extracts: A Franco-Bulgarian perspective. Food Sci. Appl. Biotechnol. 2020, 3, 167. [Google Scholar] [CrossRef]
- Adebayo, C.; Aderiye, B. Suspected mode of antimycotic action of brevicin SG1 against Candida albicans and Penicillium citrinum. Food Contr. 2011, 22, 1814–1820. [Google Scholar] [CrossRef]
- Russo, P.; de Chiara, M.L.V.; Capozzi, V.; Arena, M.P.; Amodio, M.L.; Rascón, A.; Dueñas, M.T.; López, P.; Spano, G. Lactobacillus plantarum strains for multifunctional oat-based foods. LWT—Food Sci. Technol. 2016, 68, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Toledo, J. Roasted chickpeas as a probiotic carrier to improve L. plantarum 299v survival during storage. LWT—Food Sci. Technol. 2021, 146, 111471. [Google Scholar] [CrossRef]
- Shimakawa, Y.; Matsubara, S.; Yuki, N.; Ikeda, M.; Ishikawa, F. Evaluation of Bifidobacterium breve strain Yakult-fermented soymilk as a probiotic food. Int. J. Food Microbiol. 2002, 81, 131–136. [Google Scholar] [CrossRef]
- Sarvan, I.; Valerio, F.; Lonigro, S.L.; de Candia, S.; Verkerk, R.; Dekker, M.; Lavermicocca, P. Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res. Int. 2013, 54, 706–710. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Abu-Ghannam, N. Kinetic studies for the preparation of probiotic cabbage juice: Impact on phytochemicals and bioactivity. Ind. Crops Prod. 2013, 50, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Gamage, S.M.; Mihirani, M.K.S.; Perera, O.D.A.N.; Weerahewa, H.L.D. Development of synbiotic beverage from beetroot juice using beneficial probiotic Lactobacillus Casei 431. Ruhuna J. Sci. 2016, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Probiotication of tomato juice by lactic acid bacteria. J. Microbiol. 2004, 42, 315–318. [Google Scholar] [PubMed]
- Emser, K.; Barbosa, J.; Teixeira, P.; Bernardo de Morais, A.M.M. Lactobacillus plantarum survival during the osmotic dehydration and storage of probiotic cut apple. J. Funct. Foods 2017, 38, 519–528. [Google Scholar] [CrossRef]
- Li, C.; Niu, L.; Li, D.; Liu, C.; Liu, Y.; Liu, C.; Song, J. Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [Google Scholar]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic viability, physicochemical characteristics and acceptability during refrigerated storage of clarified apple juice supplemented with Lactobacillus paracasei ssp. paracasei and oligofructose in different package type. LWT—Food Sci. Technol. 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; De Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.; Borges, S.; Amorim, M.; Pereira, M.J.; Oliveira, A.; Pintado, M.E.; Teixeira, P. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. J. Funct. Foods 2015, 17, 340–351. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; Rodrigues, S. Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus casei NRRL B-442. Food Bioprocess Technol. 2012, 5, 2819–2826. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Saw, L.K.; Chen, S.; Wong, S.H.; Tan, S.A.; Goh, K.T. Fermentation of tropical fruit juices by lactic acid bacteria. In Proceedings of the The 12th Asean Food Conference, Bangkok, Thailand, 17 June 2011. [Google Scholar]
- Lavermicocca, P.; Valerio, F.; Lonigro, S.L.; De Angelis, M.; Morelli, L.; Callegari, M.L.; Rizzello, C.G.; Visconti, A. Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl. Environ. Microbiol. 2005, 71, 4233–4240. [Google Scholar] [CrossRef] [Green Version]
- Gogineni, V.K.; Morrow, L.E. Probiotics: Mechanisms of Action and Clinical Applications. J. Probiotics Health 2013, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Shalini, R. Effect of Hurdle Technology in Food Preservation: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 641–649. [Google Scholar] [CrossRef]
- Rahman, M.S. Hurdle Technology in Food Preservation. In Minimally Processed Foods; Food Engineering Series; Siddiqui, M., Rahman, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Zudaire, L.; Viñas, I.; Plaza, L.; Iglesias, M.B.; Abadias, M.; Aguiló-Aguayo, I. Evaluation of postharvest calcium treatment and biopreservation with Lactobacillus rhamnosus GG on the quality of fresh-cut ‘Conference’ pears. J. Sci. Food Agric. 2018, 98, 4978–4987. [Google Scholar] [CrossRef]
- Rasika, D.M.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-based milk substitutes as emerging probiotic carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Chugh, B.; Kamal-Eldin, A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 2020, 32, 76–82. [Google Scholar] [CrossRef]
- More, A.S.; Ranadheera, C.S.; Fang, Z.; Warner, R.; Ajlouni, S. Biomarkers associated with quality and safety of fresh-cut produce. Food Biosci. 2020, 34, 100524. [Google Scholar] [CrossRef]
Type | Food Product | Probiotic/s Used in Bioperservation | Mode of Biopreservation | Reference |
---|---|---|---|---|
Cereal-based | Fermented Oat flour | Lb. plantarum | Fermentation—low pH | [86] |
Probiotic roasted chickpeas | Lb. plantarum 299v | Exclusion of pathogenic microorganisms | [87] | |
Probiotic soymilk | B. breve strain Yakult | Fermentation—low pH | [88] | |
Vegetable-based | Probiotic blanched cabbage | Lb. paracasei LMG P22043 | Exclusion of pathogenic microorganisms | [89] |
Probiotic cabbage juice | Lb. plantarum Lb. rhamnosus Lb. brevis | Fermentation—low pH | [90] | |
Probiotic beetroot juice | Lb. casei 431 | Fermentation—low pH | [91] | |
Probiotic tomato juice | Lb. acidophilus Lb. casei Lb. plantarum Lb. delbrueckii | Fermentation—low pH | [92] | |
Fruit based | Probiotic cut apple | Lb. plantarum 299v | Increased antioxidant activity—delayed oxidation | [93] |
Probiotic enriched apple snacks | Lb. plantarum SICC | Production of anti-microbial bioactive compounds | [94] | |
Probiotic apple juice | Lb. paracasei ssp. paracasei | Fermentation—low pH | [95] | |
Probiotic pineapple juice | Lb. casei NRRL B-442 | Fermentation—low pH | [96] | |
probiotic orange juice powder | Lb. plantarum 299v P. acidilactici HA-6111-2 | Production of anti-microbial bioactive compounds | [97] | |
Probiotic orange juice | P. acidilactici CE51 | Fermentation—low pH | [50] | |
Probiotic cantaloupe juice | Lb. casei NRRL B-442 | Fermentation—low pH | [98] | |
Probiotic pomegranate juice | Lb. plantarum Lb. delbrueckii | Fermentation—low pH | [99] | |
Cut Honeydew melon | Lb. casei NCIMB 4114 | Increased antioxidant activity-delayed oxidation | [100] | |
Table olives | Lb. rhamnosus Lb. paracasei B. bifidum B. longum | Bacterial cell adhesion to the fruit surface | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udayakumar, S.; Rasika, D.M.D.; Priyashantha, H.; Vidanarachchi, J.K.; Ranadheera, C.S. Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages. Appl. Sci. 2022, 12, 11737. https://doi.org/10.3390/app122211737
Udayakumar S, Rasika DMD, Priyashantha H, Vidanarachchi JK, Ranadheera CS. Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages. Applied Sciences. 2022; 12(22):11737. https://doi.org/10.3390/app122211737
Chicago/Turabian StyleUdayakumar, Srusti, Dissanayake M. D. Rasika, Hasitha Priyashantha, Janak K. Vidanarachchi, and Chaminda Senaka Ranadheera. 2022. "Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages" Applied Sciences 12, no. 22: 11737. https://doi.org/10.3390/app122211737