A Random Sampling-Based Method via Gaussian Process for Motion Planning in Dynamic Environments
Abstract
:1. Introduction
- This paper presents a sampling-based local re-planning method, namely, DGLP, which can fast converge to high-quality solutions in dynamic environments.
- We provide the GRPS and PEOC methods to generate candidates for high-quality local paths and smoothly merge local paths into global paths, respectively.
- The paper evaluates the performance of DGLP via simulations and experiments.
2. Dynamic Gaussian Local Planner
Algorithm 1 DGLP | |
Require: Query (, ), (, ), Path sample count , Node count , Amplitude factor | |
1 | ; |
2 | |
3 | |
4 | |
5 | If then |
6 | return failed |
7 | return |
2.1. Overview
2.2. Gaussian Random Path Sampling (GRPS)
2.3. Path End Orientation Constraint (EPOC)
3. Experiments
3.1. Simulations
3.2. Robot Experiments
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.F.; Xi, F.F.; Bi, Y.B. Design and Analysis of a Robotic End-Effector for Automated Hi-Lok Nut Installation. Coatings 2022, 12, 904. [Google Scholar] [CrossRef]
- Song, K.; Wang, J.; Bao, Y.; Huang, L.; Yan, Y. A Novel Visible-Depth-Thermal Image Dataset of Salient Object Detection for Robotic Visual Perception. IEEE ASME Trans. Mechatron. 2022, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Xi, J.L.; Bai, H.F.; Wang, Z.N.; Sun, L.L. A general robot inverse kinematics solution method based on improved PSO algorithm. IEEE Access 2021, 9, 32341–32350. [Google Scholar]
- Golluccio, G.; Gillini, G.; Marino, A.; Antonelli, G. Robot Dynamics Identification: A Reproducible Comparison With Experiments on the Kinova Jaco. IEEE Robot. Autom. Mag. 2021, 28, 128–140. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.Y.; Xiao, N.; Zhang, T.W.; Bian, G.B. Gait planning and control method for humanoid robot using im-proved target positioning. Sci. China Inf. Sci. 2020, 63, 170210. [Google Scholar] [CrossRef]
- Garrett, C.R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.; Karelbling, L.P.; Lozano-Perez, T. Integrated task and motion plan-ning. Annu. Rev. Control Robot. Auton. Syst. 2021, 4, 265–293. [Google Scholar] [CrossRef]
- Cheon, H.; Kim, B.K. Online Bidirectional Trajectory Planning for Mobile Robots in State-Time Space. IEEE Trans. Ind. Electron. 2019, 66, 4555–4565. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Tang, Y.; Liu, J. Trajectory Optimization of Electrostatic Spray Painting Robots on Curved Surface. Coatings 2017, 7, 155. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.C.; Ahn, H.; Lee, D.S.; Lee, S.C. Improved analytic expansions in hybrid A-star path planning for non-holonomic ro-bots. Appl. Sci. 2022, 12, 5999. [Google Scholar] [CrossRef]
- Alshammrei, S.; Boubaker, S.; Kolsi, L. Improved Dijkstra Algorithm for Mobile Robot Path Planning and Obstacle Avoidance. Comput. Mater. Contin. 2022, 72, 5939–5954. [Google Scholar] [CrossRef]
- Kingston, Z.; Moll, M.; Kavraki, L.E. Sampling-Based Methods for Motion Planning with Constraints. Annu. Rev. Control. Robot. Auton. Syst. 2018, 1, 159–185. [Google Scholar] [CrossRef]
- Salzman, O. Sampling-based robot motion planning. Commun. ACM 2019, 62, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.; Morere, P.; Ramos, F.; Francis, G. Bayesian Local Sampling-Based Planning. IEEE Robot. Autom. Lett. 2020, 5, 1954–1961. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Xia, Z.Y.; Xiong, J. Robotic Manipulation Planning using Dynamic RRT. In Proceedings of the IEEE International Conference on Real-Time Computing and Robotics, Angkor Wat, Cambodia, 6–9 June 2016. [Google Scholar]
- Xu, J.; Song, K.; Zhang, D.; Dong, H.; Yan, Y.; Meng, Q. Informed Anytime Fast Marching Tree for Asymptotically Optimal Motion Planning. IEEE Trans. Ind. Electron. 2021, 68, 5068–5077. [Google Scholar] [CrossRef]
- Gammell, J.D.; Barfoot, T.D.; Srinivasa, S.S. Informed Sampling for Asymptotically Optimal Path Planning. IEEE Trans. Robot. 2018, 34, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional con-figuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Francis, A.; Faust, A.; Chiang, H.-T.L.; Hsu, J.; Kew, J.C.; Fiser, M.; Lee, T.-W.E. Long-Range Indoor Navigation With PRM-RL. IEEE Trans. Robot. 2020, 36, 1115–1134. [Google Scholar] [CrossRef] [Green Version]
- Alarabi, S.; Luo, C.M.; Santora, M.A. PRM Approach to Path Planning with Obstacle Avoidance of an Autonomous Robot. In Proceedings of the IEEE International Conference on Automation Robotics and Applications, Electra Network, Prague, Czech Republic, 18–20 February 2022. [Google Scholar]
- LaValle, S.M.; Kuffner, J.J. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400. [Google Scholar] [CrossRef]
- Yu, Z.H.; Xiang, L.Y. NPQ-RRT*: An Improved RRT* Approach to Hybrid Path Planning. Complexity 2021, 2021, 6633878. [Google Scholar] [CrossRef]
- Kang, J.-G.; Lim, D.-W.; Choi, Y.-S.; Jang, W.-J.; Jung, J.-W. Improved RRT-Connect Algorithm Based on Triangular Inequality for Robot Path Planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Janson, L.; Schmerling, E.; Clark, A.; Pavone, M. Fast marching tree: A fast marching sampling-based method for optimal mo-tion planning many dimensions. Int. J. Robot. Res. 2015, 34, 883–921. [Google Scholar]
- Starek, J.A.; Gomez, J.V.; Schmerling, E.; Janson, L.; Moreno, L.; Pavone, M. An Asymptotically-Optimal Sampling-Based Algo-rithm for Bi-Directional Motion Planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Wu, Z.; Chen, Y.; Liang, J.; He, B.; Wang, Y. ST-FMT*: A Fast Optimal Global Motion Planning for Mobile Robot. IEEE Trans. Ind. Electron. 2022, 69, 3854–3864. [Google Scholar] [CrossRef]
- Chen, Y.; He, Z.; Li, S. Horizon-based lazy optimal RRT for fast, efficient replanning in dynamic environment. Auton. Robot. 2019, 43, 2271–2292. [Google Scholar] [CrossRef]
- Sucan, I.A.; Moll, M.; Kavraki, L.E. The Open Motion Planning Library. IEEE Robot. Autom. Mag. 2012, 19, 72–82. [Google Scholar] [CrossRef]
Planning Space | Method | Advantages | Disadvantages |
---|---|---|---|
Statics | Sampling-based methods with anytime technology | They find multiple feasible paths. | They do not return solutions until all the allowed time runs out |
PRM-based methods | They plan online efficiently. | They rebuild roadmaps offline if the environment changes. | |
RRT-based methods | They are very flexible and can directly run online. | Planning path quality is not stable. | |
Dynamics | RRT-based methods | They are very flexible and can directly run online. | Planning path quality is not stable. |
AO methods without anytime technology | They plan high-quality paths online. | Planning efficiency needs to be improved. |
Experiments | Method | Avg. Time (s) | Avg. Path Cost (m) | Success Rate |
---|---|---|---|---|
Robot simulation | RRT | 1.04 (1.00) | 1.0641 (1.00) | 9/10 (−1.00) |
FMT* | 0.43 (−0.21) | 0.6969 (−1.00) | 10/10 (1.00) | |
DGLP | 0.03 (−1.00) | 0.7449 (−0.74) | 10/10 (1.00) | |
Robot experiment | RRT | 0.90 (1.00) | 0.9778 (1.00) | 7/10 (1.00) |
FMT* | 0.52 (0.116) | 0.8008 (−1.00) | 9/10 (−1.00) | |
DGLP | 0.04 (−1.00) | 0.8396 (−0.56) | 8/10 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Qiao, J.; Han, X.; He, Y.; Tian, H.; Wei, Z. A Random Sampling-Based Method via Gaussian Process for Motion Planning in Dynamic Environments. Appl. Sci. 2022, 12, 12646. https://doi.org/10.3390/app122412646
Xu J, Qiao J, Han X, He Y, Tian H, Wei Z. A Random Sampling-Based Method via Gaussian Process for Motion Planning in Dynamic Environments. Applied Sciences. 2022; 12(24):12646. https://doi.org/10.3390/app122412646
Chicago/Turabian StyleXu, Jing, Jinghui Qiao, Xu Han, Yu He, Hongkun Tian, and Zhe Wei. 2022. "A Random Sampling-Based Method via Gaussian Process for Motion Planning in Dynamic Environments" Applied Sciences 12, no. 24: 12646. https://doi.org/10.3390/app122412646
APA StyleXu, J., Qiao, J., Han, X., He, Y., Tian, H., & Wei, Z. (2022). A Random Sampling-Based Method via Gaussian Process for Motion Planning in Dynamic Environments. Applied Sciences, 12(24), 12646. https://doi.org/10.3390/app122412646