Relationship between Sociodemographic Factors and Depression in Australian Population Aged 16–85 Years
Abstract
:1. Introduction
2. Materials and Methods
- Gender—male or female (categorical).
- Age—the range was from 16–85 years (continuous). For the purposes of the descriptive statistics and prevalence rates, it was displayed in tabular format into 10-year groups.
- Level of education groups—each year level at school from “Year 8 or below” to “Year 12 or above” (categorical).
- Income—gross weekly equivalized income of household was originally in decile ranges from <$277 to >$1713 (categorical), however due to the number of groups, it was consolidated into quintiles. The “not stated” or “not known” income groups were excluded from prevalence rates or input into the statistical model.
Statistical Analyses
3. Results
3.1. Descriptive Analysis
3.2. Prevalence of Depression
3.3. Association of Sociodemographic Factors with Lifetime and 12-Month Depression:
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- APA. APA Dictionary of Psychology; VandenBos, G.R., American Psychological Association, Eds.; American Psychological Association: Washington, DC, USA, 2015. [Google Scholar]
- Beyond Blue. What Causes Depression 2022. Available online: https://www.beyondblue.org.au/the-facts/depression/what-causes-depression (accessed on 27 May 2022).
- WHO. Depression 2022. Available online: https://www.who.int/health-topics/depression#tab=tab_1 (accessed on 10 March 2022).
- Lee, Y.C.; Chatterton, M.L.; Magnus, A.; Mohebbi, M.; Le, L.K.; Mihalopoulos, C. Cost of high prevalence mental disorders: Findings from the 2007 Australian National Survey of Mental Health and Wellbeing. Aust. N. Z. J. Psychiatry 2017, 51, 1198–1211. [Google Scholar] [CrossRef] [PubMed]
- Akhtar-Danesh, N.; Landeen, J. Relation between depression and sociodemographic factors. Int. J. Ment. Health Syst. 2007, 1, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjelland, I.; Krokstad, S.; Mykletun, A.; Dahl, A.A.; Tell, G.S.; Tambs, K. Does a higher educational level protect against anxiety and depression? The HUNT study. Soc. Sci. Med. 2008, 66, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Murata, C.; Kondo, K.; Hirai, H.; Ichida, Y.; Ojima, T. Association between depression and socio-economic status among community-dwelling elderly in Japan: The Aichi Gerontological Evaluation Study (AGES). Health Place 2008, 14, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Hagnell, O.; Lanke, J.; Rorsman, B.; Öjesjö, L. Are we entering an age of melancholy? Depressive illnesses in a prospective epidemiological study over 25 years: The Lundby Study, Sweden. Psychol. Med. 1982, 12, 279–289. [Google Scholar] [CrossRef]
- Myers, J.K.; Weissman, M.M.; Tischler, G.L.; Holzer, C.E., III; Leaf, P.J.; Orvaschel, H.; Anthony, J.C.; Boyd, J.H.; Burke, J.D., Jr.; Kramer, M.; et al. Six-month prevalence of psychiatric disorders in three communities 1980 to 1982. Arch. Gen. Psychiatry 1984, 41, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Van de Velde, S.; Bracke, P.; Levecque, K. Gender differences in depression in 23 European countries. Cross-national variation in the gender gap in depression. Soc. Sci. Med. 2010, 71, 305–313. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Validity of the Patient Health Questionnaire-9 for DSM-IV major depressive disorder in a sample of Canadian working population. J. Affect. Disord. 2015, 187, 122–126. [Google Scholar] [CrossRef]
- Lorant, V.; Deliege, D.; Eaton, W.; Robert, A.; Philippot, P.; Ansseau, M. Socioeconomic inequalities in depression: A meta-analysis. Am. J. Epidemiol. 2003, 157, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Adnan, R. Socio-demographic factors and their correlation with the severity of major depressive disorder: A population based study. World J. Neurosci. 2017, 7, 193. [Google Scholar] [CrossRef]
- Richardson, R.A.; Keyes, K.M.; Medina, J.T.; Calvo, E. Sociodemographic inequalities in depression among older adults: Cross-sectional evidence from 18 countries. Lancet Psychiatry 2020, 7, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.K.; Azahadi, M.; Phang, S.N.; Abd Manaf, N.H. Sociodemographic, Lifestyle, and Health Factors Associated With Depression and Generalized Anxiety Disorder Among Malaysian Adults. J. Prim. Care Community Health 2020, 11, 2150132720921738. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Y.; Zheng, L.; Pang, H.; Zhang, Q.; Lou, L.; Huang, X. Sex Difference in Global Burden of Major Depressive Disorder: Findings From the Global Burden of Disease Study 2019. Front. Psychiatry 2022, 13, 789305. [Google Scholar] [CrossRef] [PubMed]
- Everson, S.A.; Maty, S.C.; Lynch, J.W.; Kaplan, G.A. Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J. Psychosom. Res. 2002, 53, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Fryers, T.; Melzer, D.; Jenkins, R. Social inequalities and the common mental disorders: A systematic review of the evidence. Soc. Psychiatry Psychiatr. Epidemiol. 2003, 38, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics A. Mental Health 2018. Available online: https://www.abs.gov.au/statistics/health/mental-health/mental-health/latest-release (accessed on 17 March 2022).
- Handley, T.E.; Rich, J.; Lewin, T.J.; Kelly, B.J. The predictors of depression in a longitudinal cohort of community dwelling rural adults in Australia. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Kilkkinen, A.; Kao-Philpot, A.; O’Neil, A.; Philpot, B.; Reddy, P.; Bunker, S.; Dunbar, J. Prevalence of psychological distress, anxiety and depression in rural communities in Australia. Aust. J. Rural Health 2007, 15, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Reavley, N.J.; Jorm, A.F.; Cvetkovski, S.; Mackinnon, A.J. National depression and anxiety indices for Australia. Aust. N. Z. J. Psychiatry 2011, 45, 780–787. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Andrews, G.; Slade, T. Interpreting scores on the Kessler Psychological Distress Scale (K10). Aust. N. Z. J. Public Health 2001, 25, 494–497. [Google Scholar] [CrossRef]
- Brandt, W.A.; Loew, T.; von Heymann, F.; Stadtmüller, G.; Tischinger, M.; Strom, F.; Molfenter, J.; Georgi, A.; Tritt, K. How does the ICD-10 symptom rating (ISR) with four items assess depression compared to the BDI-II? A validation study. J. Affect. Disord. 2015, 173, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.; Henderson, S.; Hall, W. Prevalence, comorbidity, disability and service utilisation. Overview of the Australian National Mental Health Survey. Br. J. Psychiatry 2001, 178, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, T.; Johnston, A.; Oakley Browne, M.A.; Andrews, G.; Whiteford, H. 2007 National Survey of Mental Health and Wellbeing: Methods and key findings. Aust. N. Z. J. Psychiatry 2009, 43, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Patten, S.B.; Wang, J.L.; Williams, J.V.; Currie, S.; Beck, C.A.; Maxwell, C.J.; El-Guebaly, N. Descriptive epidemiology of major depression in Canada. Can. J. Psychiatry 2006, 51, 84–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.M.; Andrews, G.; Szabo, M. Depression in young people: What causes it and can we prevent it? Med. J. Aust. 2002, 177, S93–S96. [Google Scholar] [CrossRef]
- Joyce, P.R.; Oakley-Browne, M.A.; Wells, J.E.; Bushnell, J.A.; Hornblow, A.R. Birth cohort trends in major depression: Increasing rates and earlier onset in New Zealand. J. Affect. Disord. 1990, 18, 83–89. [Google Scholar] [CrossRef]
- Reavley, N.J.; Jorm, A.F. National Survey of Mental Health Literacy and Stigma; Department of Health and Ageing: Canberra, Australia, 2011.
- Islam, F.M.A. Psychological distress and its association with socio-demographic factors in a rural district in Bangladesh: A cross-sectional study. PLoS ONE 2019, 14, e0212765. [Google Scholar] [CrossRef] [Green Version]
- Dohrenwend, B.P.; Levav, I.; Shrout, P.E.; Schwartz, S.; Naveh, G.; Link, B.G.; Skodol, A.E.; Stueve, A. Socioeconomic status and psychiatric disorders: The causation-selection issue. Science 1992, 255, 946–952. [Google Scholar] [CrossRef]
- Alegria, M.; Bijl, R.V.; Lin, E.; Walters, E.E.; Kessler, R.C. Income differences in persons seeking outpatient treatment for mental disorders: A comparison of the United States with Ontario and The Netherlands. Arch. Gen. Psychiatry 2000, 57, 383–391. [Google Scholar] [CrossRef]
Number | Percent (%) | |
---|---|---|
Gender | ||
Female | 4814 | 54.5 |
Male | 4027 | 45.5 |
Age | ||
16–25 | 1552 | 17.6 |
26–35 | 1389 | 15.7 |
36–45 | 1587 | 18.0 |
46–55 | 1255 | 14.2 |
56–65 | 1988 | 22.5 |
66–75 | 1070 | 12.1 |
Highest year of school completed | ||
Year 12 and above | 4061 | 45.9 |
Year 11 | 1014 | 11.5 |
Year 10 | 2178 | 24.6 |
Year 9 | 773 | 8.7 |
Year 8 or below | 815 | 9.2 |
Household income | ||
First quintile | 1894 | 11.9 |
Second quintile | 1537 | 9.1 |
Third quintile | 1472 | 8.4 |
Fourth quintile | 1424 | 8.3 |
Fifth quintile | 1473 | 8.3 |
Not stated | 76 | 0.9 |
Not known | 965 | 10.9 |
Lifetime | 12-Month | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number at Risk | Prevalence N (%) | p-Value | OR (95% CI) * | OR (95% CI) + | Prevalence N (%) | p-Value | OR (95% CI) * | OR (95% CI) + | |
Total | 8841 | 1341 (15.2) | 537 (6.1) | ||||||
Gender | p < 0.001 | p < 0.001 | |||||||
Male | 4027 | 463 (11.5) | 1.0 (ref) | 1.0 (ref) | 183 (4.5) | 1.0 (ref) | 1.0 (ref) | ||
Female | 4814 | 878 (18.2) | 1.72 (1.52, 1.94) | 1.70 (1.50, 1.92) | 354 (7.4) | 1.67 (1.39, 2.00) | 1.64 (1.37, 1.98) | ||
Age, per year increase | p = 0.003 | 0.99 (0.99, 1.00) | 0.99 (0.99, 1.00) | p < 0.001 | 0.99 (0.98, 1.00) | 0.98 (0.98, 0.99) | |||
16–25 | 1552 | 179 (11.5) | 96 (6.2) | ||||||
26–35 | 1389 | 251 (18.1) | 108 (7.8) | ||||||
36–45 | 1587 | 303 (19.1) | 121 (7.6) | ||||||
46–55 | 1255 | 269 (21.4) | 105 (8.4) | ||||||
56–65 | 1988 | 245 (12.3) | 78 (3.9) | ||||||
66–75 | 1070 | 94 (8.8) | 29 (2.7) | ||||||
Level of education | p = 0.005 | p = 0.575 | |||||||
Year 12 and above | 4061 | 638 (15.7 | 1.0 (ref) | 1.0 (ref) | 243 (6.0) | 1.0 (ref) | 1.0 (ref) | ||
Year 11 | 1014 | 179 (17.7) | 1.15 (0.96, 1.38) | 1.15 (0.96, 1.38) | 72 (7.1) | 1.20 (0.89, 1.61) | 1.19 (0.90, 1.57) | ||
Year 10 | 2178 | 324 (14.9) | 0.94 (0.81, 1.08) | 0.97 (0.83, 1.13) | 133 (6.1) | 1.00 (0.79, 1.26) | 1.15 (0.92, 1.43) | ||
Year 9 | 773 | 95 (12.3) | 0.75 (0.60, 0.95) | 0.82 (0.64, 1.04) | 46 (6.0) | 1.01 (0.72, 1.43) | 1.25 (0.89, 1.75) | ||
Year 8 or below | 815 | 105 (12.9) | 0.79 (0.64, 0.99) | 0.91 (0.71, 1.16) | 43 (5.3) | 0.90 (0.63, 1.27) | 1.32 (0.81, 1.91) | ||
Household income | p = 0.006 | p = 0.875 | |||||||
First quintile | 1894 | 309 (16.3) | 1.0 (ref) | 1.0 (ref) | 130 (6.9) | 1.0 (ref) | 1.0 (ref) | ||
Second quintile | 1537 | 228 (14.8) | 0.89 (0.74, 1.08) | 0.89 (0.74, 1.07) | 92 (6.0) | 0.86 (0.66, 1.14) | 0.85 (0.65, 1.12) | ||
Third quintile | 1472 | 237 (16.1 | 0.98 (0.82, 1.18) | 0.96 (0.80, 1.16) | 93 (6.3) | 0.92 (0.70, 1.21) | 0.88 (0.67, 1.17) | ||
Fourth quintile | 1424 | 216 (15.2) | 0.92 (0.76, 1.11) | 0.88 (0.74, 1.07) | 86 (6.0) | 0.87 (0.66, 1.16) | 0.82 (0.62, 1.10) | ||
Fifth quintile | 1473 | 200 (13.6) | 0.81 (0.67, 0.98) | 0.80 (0.65, 0.96) | 70 (4.8) | 0.68 (0.50, 0.91) | 0.67 (0.50, 0.91) |
Lifetime | 12-Month | |||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
OR (95% CI) * | OR (95% CI) + | OR (95% CI) * | OR (95% CI) + | OR (95% CI) * | OR (95% CI) + | OR (95% CI) * | OR (95% CI) + | |
Age, per year increase | 1.0 (0.94, 1.06) | 1.0 (0.99, 1.00) | 0.93 (0.88, 0.97) | 0.99 (0.99, 1.00) | 0.90 (0.82, 0.99) | 0.99 (0.98, 1.00) | 0.99 (0.98, 0.99) | 0.98 (0.98, 0.99) |
Level of Education | ||||||||
Year 12 and above | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | |||
Year 11 | 1.08 (0.77, 1.52 | 1.08 (0.80, 1.48) | 1.18 (0.93, 1.50) | 1.18 (0.94, 1.49) | 1.29 (0.77, 2.15) | 1.19 (0.75, 1.89) | 1.15 (0.80, 1.65) | 1.19 (0.85, 1.67) |
Year 10 | 1.01 (0.78, 1.31) | 1.01 (0.79, 1.28) | 0.88 (0.73, 1.07) | 0.96 (0.79, 1.16) | 1.1 (0.74, 1.65) | 1.13 (0.78, 1.65) | 0.94 (0.71, 1.25) | 1.16 (0.88, 1.54) |
Year 9 | 0.82 (0.55, 1.23) | 0.82 (0.54, 1.17) | 0.76 (0.56, 1.03) | 0.84 (0.62, 1.14) | 1.14 (0.64, 2.02) | 1.1 (0.62, 1.93) | 0.97 (0.63, 1.50) | 1.35 (0.89, 2.07) |
Year 8 or below | 0.88 (0.61, 1.29) | 0.87 (0.60, 1.31) | 0.79 (0.58, 1.06) | 0.94 (0.69, 1.29) | 0.9 (0.49, 1.64) | 1.14 (0.62, 2.11) | 0.93 (0.60, 1.43) | 1.46 (0.92, 2.32) |
Household income | ||||||||
First quintile | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) | 1.0 (ref) |
Second quintile | 0.83 (0.60, 1.16) | 0.83 (0.59, 1.15) | 0.96 (0.76, 1.20) | 0.92 (0.73, 1.16) | 0.7 (0.42, 1.16) | 0.69 (0.42, 1.14) | 0.98 (0.70, 1.36) | 0.94 (0.68, 1.32) |
Third quintile | 1.07 (0.78, 1.47) | 1.04 (0.75, 1.42) | 0.99 (0.79, 1.25) | 0.93 (0.73, 1.17) | 0.77 (0.47, 1.25) | 0.73 (0.45, 1.20) | 1.04 (0.75, 1.45) | 0.97 (0.69, 1.36) |
Fourth quintile | 0.97 (0.70, 1.35) | 0.93 (0.65, 1.29) | 0.93 (0.73, 1.17) | 0.86 (0.68, 1.09) | 0.84 (0.52, 1.37) | 0.78 (0.47, 1.27) | 0.91 (0.65, 1.29) | 0.85 (0.60, 1.21) |
Fifth quintile | 0.97 (0.71, 1.33) | 0.93 (0.67, 1.28) | 0.78 (0.61, 0.99) | 0.72 (0.56, 0.93) | 0.74 (0.45, 1.20) | 0.7 (0.43, 1.15) | 0.68 (0.47, 1.00) | 0.65 (0.44, 0.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felmingham, T.; Islam, F.M.A. Relationship between Sociodemographic Factors and Depression in Australian Population Aged 16–85 Years. Appl. Sci. 2022, 12, 12685. https://doi.org/10.3390/app122412685
Felmingham T, Islam FMA. Relationship between Sociodemographic Factors and Depression in Australian Population Aged 16–85 Years. Applied Sciences. 2022; 12(24):12685. https://doi.org/10.3390/app122412685
Chicago/Turabian StyleFelmingham, Ty, and Fakir M. Amirul Islam. 2022. "Relationship between Sociodemographic Factors and Depression in Australian Population Aged 16–85 Years" Applied Sciences 12, no. 24: 12685. https://doi.org/10.3390/app122412685
APA StyleFelmingham, T., & Islam, F. M. A. (2022). Relationship between Sociodemographic Factors and Depression in Australian Population Aged 16–85 Years. Applied Sciences, 12(24), 12685. https://doi.org/10.3390/app122412685