Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. AFB1 Binding by Lactic Acid Bacteria in Fava Bean Suspension
2.2. Chemicals and Reagents for AFB1 Analysis
2.3. UHPLC-MS/MS Calibration for AFB1 Analysis
2.4. AFB1 Extraction from Fava Bean Supernatant and Analysis by UHPLC-MS/MS
2.5. Validation of the UHPLC-MS/MS Method for AFB1 Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006; Available online: http://www.virtualcentre.org/enlibrary/key_pub/longshad/A0701E00.pdf (accessed on 1 December 2006).
- Van Loo, E.J.; Hoefkens, C.; Verbeke, W. Healthy, sustainable and plant-based eating: Perceived (mis) match and involvement-based consumer segments as targets for future policy. Food Policy 2017, 69, 46–57. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations (FAO). Animal Production. November 2018. Available online: http://www.fao.org/animal-production/en/ (accessed on 1 December 2018).
- United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Graça, J.; Godinho, C.A.; Truninger, M. Reducing meat consumption and following plant-based diets: Current evidence and future directions to inform integrated transitions. Trends Food Sci. Technol. 2019, 91, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 476S–482S. [Google Scholar] [CrossRef] [Green Version]
- Nathanail, A.V. Modified Fusarium Mycotoxins: A Threat in Discuise? Ph.D. Dissertation, Faculty of Agriculture and Forestry, Department of Food and Nutrition, University of Helsinki, Helsinki, Finland, 2019. Available online: http://urn.fi/URN:ISBN:978-951-51-5661-7 (accessed on 16 December 2019).
- Schatzmayr, G.; Streit, E. Global occurrence of mycotoxins in the food and feed chain: Facts and figures. World Mycotoxin J. 2013, 6, 213–222. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Marasas, W.F.; Gelderblom, W.C.; Shephard, G.S.; Vismer, H.F. Mycotoxins: A global problem. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J.F., Bandyopadhyay, R., Visconti, A., Eds.; CABI: Wallingford, UK, 2008; Volume 1, pp. 29–36. ISBN 978-1-84593-082-0. [Google Scholar] [CrossRef]
- World Health Organization and International Agency for Research on Cancer. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; World Health Organization: Geneva, Switzerland, 1993; Volume 56, p. 599. [Google Scholar] [CrossRef]
- Commission Regulation (EC), Setting Maximum Levels for Certain Contaminants in Foodstuffs. No. 1881/2006 of 19 December 2006. Official Journal of the European Union L 364. 20 December 2006, pp. 5–24. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 10 November 2022).
- Al-Taher, F.; Cappozzo, J.; Zweigenbaum, J.; Lee, H.J.; Jackson, L.; Ryu, D. Detection and quantitation of mycotoxins in infant cereals in the US market by LC-MS/MS using a stable isotope dilution assay. Food Control 2017, 72, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Er Demirhan, B.; Demirhan, B. Investigation of Twelve Significant Mycotoxin Contamination in Nut-Based Products by the LC–MS/MS Method. Metabolites 2022, 12, 120. [Google Scholar] [CrossRef]
- Wu, F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015, 8, 137–142. [Google Scholar] [CrossRef]
- Jallow, A.; Xie, H.; Tang, X.; Qi, Z.; Li, P. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2332–2381. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the Scientific Panel on contaminants in the food chain on a request from the Commission related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived product. EFSA J. 2007, 5, 446. [Google Scholar]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.J.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B 1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miazzo, R.; Rosa, C.A.R.; De Queiroz Carvalho, E.C.; Magnoli, C.; Chiacchiera, S.M.; Palacio, G.; Saenz, M.; Kikot, A.; Basaldella, E.; Dalcero, A. Environment and health. Efficacy of Synthetic Zeolite to Reduce the Toxicity of Aflatoxin in Broiler Chicks. Poult. Sci. 2000, 79, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, R.; Luo, X.; Chen, Z.; Wang, L.; Zhou, Y.; Liu, W.; Cheng, M.; Zhang, C. Synthesis of Rice Husk-Based MCM-41 for Removal of Aflatoxin B1 from Peanut Oil. Toxins 2022, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, F.; Zhou, X.; Liu, M.; Zang, H.; Liu, X.; Shan, A.; Feng, X. Alleviation of Oral Exposure to Aflatoxin B1-Induced Renal Dysfunction, Oxidative Stress, and Cell Apoptosis in Mice Kidney by Curcumin. Antioxidants 2022, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Steinkraus, K.H. Lactic acid fermentations. In Applications of Biotechnology to Traditional Fermented Foods; The National Academies Press: Washington, DC, USA, 1992; pp. 43–51. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.; Goyal, A. Probiotic potential of Pediococcus pentosaceus CRAG3: A new isolate from fermented cucumber. Probiotics Antimicrob. Proteins 2014, 6, 11–21. [Google Scholar] [CrossRef]
- Teixeira, P. Lactobacillus: Lactobacillus brevis. In Encyclopedia of Food Microbiology; Robinson, R.K., Batt, C.A., Patel, P.D., Eds.; Academic Press: London, UK, 1999; pp. 1136–1144. ISBN 978-0-12-227070-3. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef] [PubMed]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsina, I.; Kronberga, A.; Balliau, A.; Olle, M.; et al. Faba bean cultivation–revealing novel managing practices for more sustainable and competitive European cropping systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef] [PubMed]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahala, M.; Savijoki, K.; Palva, A. In vivo expression of the Lactobacillus brevis S-layer gene. J. Bact. 1997, 179, 284–286. [Google Scholar] [CrossRef] [Green Version]
- Ahlberg, S.; Joutsjoki, V.; Laurikkala, S.; Varmanen, P.; Korhonen, H. Aspergillus flavus growth inhibition by Lactobacillus strains isolated from traditional fermented Kenyan milk and maize products. Arch. Microbiol. 2017, 199, 457–464. [Google Scholar] [CrossRef]
- Mäkimattila, E.; Kahala, M.; Joutsjoki, V. Characterization and electrotransformation of Lactobacillus plantarum and Lactobacillus paraplantarum isolated from fermented vegetables. World J. Microbiol. Biotechnol. 2011, 27, 371–379. [Google Scholar] [CrossRef]
- Rämö, S.; Huuskonen, A.; Franco, M.; Manni, K.; Rinne, M. Method development for mycotoxin analysis in grass silages. In Proceedings of the 28th General Meeting of the European Grassland Federation, Helsinki, Finland, 19–21 October 2020; Available online: https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2020.pdf (accessed on 1 October 2020).
- Manni, K.; Rämö, S.; Franco, M.; Rinne, M.; Huuskonen, A. Occurrence of Mycotoxins in Grass and Whole-Crop Cereal Silages—A Farm Survey. Agriculture 2022, 12, 398. [Google Scholar] [CrossRef]
- Ross, A.; Willson, V.L. Paired Samples T-Test. In Basic and Advanced Statistical Tests; Sense Publishers: Rotterdam, The Netherlands, 2017; pp. 17–19. [Google Scholar] [CrossRef]
- Afshar, P.; Shokrzadeh, M.; Raeisi, S.N.; Ghorbani-HasanSaraei, A.; Nasiraii, L.R. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020, 178, 50–58. [Google Scholar] [CrossRef]
- Emadi, A.; Eslami, M.; Yousefi, B.; Abdolshahi, A. In vitro strain specific reducing of aflatoxin B1 by probiotic bacteria: A systematic review and meta-analysis. Toxin Reviews 2022, 41, 995–1006. [Google Scholar] [CrossRef]
- Hynönen, U.; Palva, A. Lactobacillus surface layer proteins: Structure, function and applications. Appl. Microbiol. Biotechnol. 2013, 97, 5225–5243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, C.O.D.A.; Freire, L.; Rosim, R.E.; Margalho, L.P.; Balthazar, C.F.; Franco, L.T.; de Souza Sant’Ana, A.; Corassin, C.H.; Rattray, F.P.; Oliveira, C.A.F.D. Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B1, Ochratoxin A, and Zearalenone in vitro. Front. Microbiol. 2021, 12, 899. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “tofu”. PLoS ONE 2017, 12, e0170109. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xu, Y.; Yang, Q. Antifungal properties and AFB1 detoxification activity of a new strain of Lactobacillus plantarum. J. Hazard. Mater. 2021, 414, 125569. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report; Contribution of Working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pauchan, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Joutsjoki, V.V.; Korhonen, H.J. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—Case study Kenya. Food Qual. Saf. 2021, 5, fyab005. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Ortega –Beltran, A.; Akande, A.; Mutegi, C.; Atehkeng, J.; Kaptoge, I.; Senghor, A.; Adhikari, B.; Cotty, P. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez Tuppia, C.; Quieroz, M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef]
- Nyamete, F.A.; Bennink, M.; Mugula, J.K. Potential of lactic acid fermentation in reducing aflatoxin B1 in Tanzania maize-based gruel. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11139–11151. [Google Scholar] [CrossRef]
- Shigute, T.; Washe, A.P. Reduction of aflatoxin M1 levels during Ethiopian traditional fermented milk (Ergo) production. J. Food Qual. 2018, 2018, 4570238. [Google Scholar] [CrossRef] [Green Version]
- Wacoo, A.P.; Mukisa, I.M.; Meeme, R.; Byakisa, S.; Wendiro, D.; Sybesma, W.; Kort, R. Probiotic enrichment and reduction of aflatoxins in a traditional African maize-based fermented food. Nutrients 2018, 11, 265. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rämö, S.; Kahala, M.; Joutsjoki, V. Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation. Appl. Sci. 2022, 12, 12769. https://doi.org/10.3390/app122412769
Rämö S, Kahala M, Joutsjoki V. Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation. Applied Sciences. 2022; 12(24):12769. https://doi.org/10.3390/app122412769
Chicago/Turabian StyleRämö, Sari, Minna Kahala, and Vesa Joutsjoki. 2022. "Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation" Applied Sciences 12, no. 24: 12769. https://doi.org/10.3390/app122412769
APA StyleRämö, S., Kahala, M., & Joutsjoki, V. (2022). Aflatoxin B1 Binding by Lactic Acid Bacteria in Protein-Rich Plant Material Fermentation. Applied Sciences, 12(24), 12769. https://doi.org/10.3390/app122412769