Blockchain Technology and Artificial Intelligence Together: A Critical Review on Applications
Abstract
:1. Introduction
2. Research Methodology
2.1. Planning the Review
2.2. Research Strategy
- ▪
- Inclusion criteria (ICs).
- The publication of research may occur at any time between 2012 and 2022.
- The paper must combine blockchain technology and AI.
- The scope of the study is limited to the journal.
- ▪
- Exclusion criteria (EC).
- The deletion of articles in the press.
- Articles not written in English.
- Exclusion of book chapters, dissertations, conference proceedings, interview-based works, and reviews.
3. Blockchain and Artificial Intelligence
Selection Results
4. Benefits of Blockchains and AI Together
4.1. Automation
4.2. Augmentation
4.3. Authenticity
5. AI and Blockchain Use Cases
5.1. Supply Chain
5.2. Financial Services
5.3. Life Sciences
5.4. Healthcare
5.5. Social Network Analysis
6. Why Combine AI with Blockchains
6.1. Understanding How AI Thinks
6.2. Security Improvement
6.3. Gaining Entry to and Control over the Data Market
6.4. Smart Contract Enhancement
6.5. Maximizing Energy Efficiency
7. AI Applications Powered by a Blockchain
7.1. Smart Grid
7.2. Agriculture Aspects
7.3. Supply Chain
7.4. Internet of Vehicles
7.5. Healthcare Aspect
8. Challenges
8.1. Privacy and Security
8.2. Credible Oracles
8.3. Concerning the Security of Smart Contracts and the Implications of Their Deterministic Execution
8.4. Scalability
8.5. Off-Chain and On-Chain Storage Data Cooperation
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baynham-Herd, Z. Enlist blockchain to boost conservation. Nature 2017, 548, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxmen, A. AI researchers embrace Bitcoin technology to share medical data. Nature 2018, 555, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2009. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 1 October 2022).
- Taherdoost, H. An Overview of Trends in Information Systems: Emerging Technologies that Transform the Information Technology Industry. Cloud Comput. Data Sci. 2022, 4, 1–16. [Google Scholar] [CrossRef]
- Moosavi, N.; Taherdoost, H. Blockchain and Internet of Things (IoT): A Disruptive Integration. In Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems (ICETIS 2022), Virtual Conference, 2–3 September 2022; Lecture Notes in Networks and Systems. Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Pandl, K.D.; Thiebes, S.; Schmidt-Kraepelin, M.; Sunyaev, A. On the convergence of artificial intelligence and distributed ledger technology: A scoping review and future research agenda. IEEE Access 2020, 8, 57075–57095. [Google Scholar] [CrossRef]
- Lin, J.; Shen, Z.; Miao, C. Using blockchain technology to build trust in sharing LoRaWAN IoT. In Proceedings of the 2nd International Conference on Crowd Science and Engineering, Beijing, China, 6–9 July 2017; pp. 38–43. [Google Scholar]
- Dai, Y.; Xu, D.; Maharjan, S.; Chen, Z.; He, Q.; Zhang, Y. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw. 2019, 33, 10–17. [Google Scholar] [CrossRef]
- Salimitari, M.; Chatterjee, M.; Yuksel, M.; Pasiliao, E. Profit maximization for bitcoin pool mining: A prospect theoretic approach. In Proceedings of the 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC), San Jose, CA, USA, 15–17 October 2017; pp. 267–274. [Google Scholar]
- Singh, S.K.; Rathore, S.; Park, J.H. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Gener. Comput. Syst. 2020, 110, 721–743. [Google Scholar] [CrossRef]
- Dinh, T.N.; Thai, M.T. AI and blockchain: A disruptive integration. Computer 2018, 51, 48–53. [Google Scholar] [CrossRef]
- Taherdoost, H. A Critical Review of Blockchain Acceptance Models—Blockchain Technology Adoption Frameworks and Applications. Computers 2022, 11, 24. [Google Scholar] [CrossRef]
- Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 2014, 151, 1–32. [Google Scholar]
- Kumar, A.; Abhishek, K.; Nerurkar, P.; Ghalib, M.R.; Shankar, A.; Cheng, X. Secure smart contracts for cloud-based manufacturing using Ethereum blockchain. Trans. Emerg. Telecommun. Technol. 2022, 33, e4129. [Google Scholar] [CrossRef]
- Li, D.; Deng, L.; Cai, Z.; Souri, A. Blockchain as a service models in the Internet of Things management: Systematic review. Trans. Emerg. Telecommun. Technol. 2022, 33, e4139. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, Y.; Wang, X.; Li, J.; Qin, R.; Wang, F.-Y. An overview of smart contract: Architecture, applications, and future trends. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 108–113. [Google Scholar]
- Makarius, E.E.; Mukherjee, D.; Fox, J.D.; Fox, A.K. Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. J. Bus. Res. 2020, 120, 262–273. [Google Scholar] [CrossRef]
- Fusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo, M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167. [Google Scholar] [CrossRef] [PubMed]
- Daley, S. Tastier Coffee, Hurricane Prediction and Fighting the Opioid Crisis: 31 Ways Blockchain and AI Make a Powerful Pair. Builtin in April, 2020. Available online: https://builtin.com/artificial-intelligence/blockchain-ai-examples (accessed on 1 October 2022).
- Soleymani, F.; Paquet, E. Financial portfolio optimization with online deep reinforcement learning and restricted stacked autoencoder—DeepBreath. Expert Syst. Appl. 2020, 156, 113456. [Google Scholar] [CrossRef]
- Moosavi, N.; Taherdoost, H. Blockchain-Enabled Network for 6G Wireless Communication Systems. In Proceedings of the International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI 2022), Coimbatore, India, 11–12 August 2022; Engineering Cyber-Physical Systems and Critical Infrastructures. Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Parizi, R.M.; Dehghantanha, A. Smart contract programming languages on blockchains: An empirical evaluation of usability and security. In Proceedings of the International Conference on Blockchain, Halifax, NS, Canada, 30 July–3 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 75–91. [Google Scholar]
- Parizi, R.M.; Dehghantanha, A.; Choo, K.-K.R.; Singh, A. Empirical vulnerability analysis of automated smart contracts security testing on blockchains. arXiv 2018, arXiv:1809.02702. [Google Scholar]
- Rabah, K. Convergence of AI, IoT, big data and blockchain: A review. Lake Inst. J. 2018, 1, 1–18. [Google Scholar]
- Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access 2020, 8, 90225–90265. [Google Scholar] [CrossRef]
- Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sharma, P.K.; Yoon, B.; Shojafar, M.; Cho, G.H.; Ra, I.-H. Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 2020, 63, 102364. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Wu, J.; Liang, H.; Yang, W. Making knowledge tradable in edge-AI enabled IoT: A consortium blockchain-based efficient and incentive approach. IEEE Trans. Ind. Inform. 2019, 15, 6367–6378. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Beltagui, A.; Albores, P. The potential of emergent disruptive technologies for humanitarian supply chains: The integration of blockchain, Artificial Intelligence and 3D printing. Int. J. Prod. Res. 2020, 58, 4610–4630. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Kumar, N. Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions. J. Parallel Distrib. Comput. 2020, 143, 148–166. [Google Scholar] [CrossRef]
- Akter, S.; Michael, K.; Uddin, M.R.; McCarthy, G.; Rahman, M. Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Ann. Oper. Res. 2020, 308, 7–39. [Google Scholar] [CrossRef]
- Chidepatil, A.; Bindra, P.; Kulkarni, D.; Qazi, M.; Kshirsagar, M.; Sankaran, K. From trash to cash: How blockchain and multi-sensor-driven artificial intelligence can transform circular economy of plastic waste? Adm. Sci. 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, B.R.; Anjanadevi, B.; Tahreem, M.; Kumar, S.; Debnath, M.; Tongkachok, K. Comparative Analysis of Blockchain Technology and Artificial Intelligence and Its Impact on Open Issues of Automation in Workplace. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; pp. 288–292. [Google Scholar]
- Lopes, V.; Alexandre, L.A.; Pereira, N. Controlling robots using artificial intelligence and a consortium blockchain. arXiv 2019, arXiv:1903.00660. [Google Scholar]
- Li, W.; Su, Z.; Li, R.; Zhang, K.; Wang, Y. Blockchain-based data security for artificial intelligence applications in 6G networks. IEEE Netw. 2020, 34, 31–37. [Google Scholar] [CrossRef]
- Bonifazi, G.; Corradini, E.; Ursino, D.; Virgili, L. A social network analysis–based approach to investigate user behaviour during a cryptocurrency speculative bubble. J. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Indu, V.; Thampi, S.M. A systematic review on the influence of User personality in rumor and misinformation propagation through social networks. In Proceedings of the International Symposium on Signal Processing and Intelligent Recognition Systems, Online, 29–30 December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 216–242. [Google Scholar]
- Golbeck, J.; Robles, C.; Turner, K. Predicting personality with social media. In CHI’11 Extended Abstracts on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2011; pp. 253–262. [Google Scholar]
- Meng, W.; Li, W.; Zhu, L. Enhancing medical smartphone networks via blockchain-based trust management against insider attacks. IEEE Trans. Eng. Manag. 2019, 67, 1377–1386. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Zhu, R.; Tian, W. Electric signature detection and analysis for power equipment failure monitoring in smart grid. IEEE Trans. Ind. Inform. 2020, 17, 3739–3750. [Google Scholar] [CrossRef]
- He, S.; Tian, W.; Zhang, J.; Li, K.; Zhang, M.; Zhu, R. A high efficient approach for power disturbance waveform compression in the view of heisenberg uncertainty. IEEE Trans. Ind. Inform. 2018, 15, 2580–2591. [Google Scholar] [CrossRef]
- Mollah, M.B.; Zhao, J.; Niyato, D.; Lam, K.-Y.; Zhang, X.; Ghias, A.M.; Koh, L.H.; Yang, L. Blockchain for future smart grid: A comprehensive survey. IEEE Internet Things J. 2020, 8, 18–43. [Google Scholar] [CrossRef]
- Cadoret, D.; Kailas, T.; Velmovitsky, P.; Morita, P.; Igboeli, O. Proposed implementation of blockchain in british columbia’s health care data management. J. Med. Internet Res. 2020, 22, e20897. [Google Scholar] [CrossRef] [PubMed]
- Aderibole, A.; Aljarwan, A.; Rehman, M.H.U.; Zeineldin, H.H.; Mezher, T.; Salah, K.; Damiani, E.; Svetinovic, D. Blockchain technology for smart grids: Decentralized NIST conceptual model. IEEE Access 2020, 8, 43177–43190. [Google Scholar] [CrossRef]
- Wang, Z.; Ogbodo, M.; Huang, H.; Qiu, C.; Hisada, M.; Abdallah, A.B. AEBIS: AI-enabled blockchain-based electric vehicle integration system for power management in smart grid platform. IEEE Access 2020, 8, 226409–226421. [Google Scholar] [CrossRef]
- Ge, L.; Brewster, C.; Spek, J.; Smeenk, A.; Top, J.; van Diepen, F.; Klaase, B.; Graumans, C.; de Wildt, M.D.R. Blockchain for Agriculture and Food: Findings from the Pilot Study; Wageningen Economic Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Insights, C. How Blockchain Could Transform Food Safety; 2017. Available online: https://www.cbinsights.com/research/blockchain-grocery-supply-chain/ (accessed on 1 November 2022).
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, United Arab Emirates, 11–13 February 2018; pp. 11–13. [Google Scholar]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.-C.; Park, N. IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Cao, J.; Yang, Y.; Tung, C.L.; Jiang, S.; Tang, B.; Liu, Y.; Wang, X.; Deng, Y. Data management in supply chain using blockchain: Challenges and a case study. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN), Valencia, Spain, 29 July–1 August 2019; pp. 1–8. [Google Scholar]
- Liu, L.; Zhang, J.Z.; He, W.; Li, W. Mitigating information asymmetry in inventory pledge financing through the Internet of things and blockchain. J. Enterp. Inf. Manag. 2021, 34, 1429–1451. [Google Scholar] [CrossRef]
- Gohil, D.; Thakker, S.V. Blockchain-integrated technologies for solving supply chain challenges. Modern Supply Chain Res. Appl. 2021, 3, 78–97. [Google Scholar] [CrossRef]
- D’souza, S.; Nazareth, D.; Vaz, C.; Shetty, M. Blockchain and AI in Pharmaceutical Supply Chain. In Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021), Tamil Nadu, India, 29–30 April 2021. [Google Scholar]
- Du, J.; Yu, F.R.; Chu, X.; Feng, J.; Lu, G. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization. IEEE Trans. Veh. Technol. 2018, 68, 1079–1092. [Google Scholar] [CrossRef]
- Dua, A.; Kumar, N.; Das, A.K.; Susilo, W. Secure message communication protocol among vehicles in smart city. IEEE Trans. Veh. Technol. 2017, 67, 4359–4373. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A survey. Mobile Netw. Appl. 2021, 26, 1145–1168. [Google Scholar] [CrossRef]
- Mollah, M.B.; Azad, M.A.K.; Vasilakos, A. Secure data sharing and searching at the edge of cloud-assisted internet of things. IEEE Cloud Comput. 2017, 4, 34–42. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey. J. Netw. Comput. Appl. 2020, 166, 102693. [Google Scholar] [CrossRef]
- Chai, H.; Leng, S.; Chen, Y.; Zhang, K. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3975–3986. [Google Scholar] [CrossRef]
- Ghosh, A.; Mistri, B. Spatial disparities in the provision of rural health facilities: Application of GIS based modelling in rural Birbhum, India. Spat. Inf. Res. 2020, 28, 655–668. [Google Scholar] [CrossRef]
- Bell, L.; Buchanan, W.J.; Cameron, J.; Lo, O. Applications of blockchain within healthcare. Blockchain Healthc. Today 2018, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-C.; Chen, J.S.; Chiang, M.F.; Hribar, M.R. Applications of artificial intelligence to electronic health record data in ophthalmology. Transl. Vis. Sci. Technol. 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Roehrs, A.; Da Costa, C.A.; da Rosa Righi, R.; De Oliveira, K.S.F. Personal health records: A systematic literature review. J. Med. Internet Res. 2017, 19, e5876. [Google Scholar] [CrossRef]
- Ellingsen, G.; Hertzum, M. User requirements meet large-scale EHR suites: Norwegian preparations for Epic. Stud. Health Technol. Inform. 2020, 270, 703–707. [Google Scholar] [PubMed]
- Al-Shawwa, B.; Glynn, E.; Hoffman, M.A.; Ehsan, Z.; Ingram, D.G. Outpatient health care utilization for sleep disorders in the Cerner Health Facts database. J. Clin. Sleep Med. 2021, 17, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 2020, 18, 2300–2311. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.; Deeduvanu, R.; Kanjamala, P.; Boles, K. A Blockchain-Based Approach to Health Information Exchange Networks. 2016. Available online: https://www.healthit.gov/sites/default/files/12-55-blockchain-based-approach-final.pdf (accessed on 5 September 2019).
- Kuo, T.-T.; Ohno-Machado, L. Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv 2018, arXiv:1802.01746. [Google Scholar]
- Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G. Applications of blockchain technology in medicine and healthcare: Challenges and future perspectives. Cryptography 2019, 3, 3. [Google Scholar] [CrossRef]
- Sgantzos, K.; Grigg, I. Artificial intelligence implementations on the blockchain. Use cases and future applications. Future Internet 2019, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Huh, J.-H. Artificial neural network blockchain techniques for healthcare system: Focusing on the personal health records. Electronics 2020, 9, 763. [Google Scholar] [CrossRef]
- Syed, F.; Gupta, S.K.; Hamood Alsamhi, S.; Rashid, M.; Liu, X. A survey on recent optimal techniques for securing unmanned aerial vehicles applications. Trans. Emerg. Telecommun. Technol. 2021, 32, e4133. [Google Scholar]
- Corradini, E.; Nicolazzo, S.; Nocera, A.; Ursino, D.; Virgili, L. A two-tier Blockchain framework to increase protection and autonomy of smart objects in the IoT. Comput. Commun. 2022, 181, 338–356. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Dev, K.; Qureshi, N.M.F.; Khuwaja, P.; Foschini, L. Toward industrial private AI: A two-tier framework for data and model security. IEEE Wirel. Commun. 2022, 29, 76–83. [Google Scholar] [CrossRef]
- Stradling, A.; Voorhees, E. System and Method of Providing a Multi-Validator Oracle. Google Patents US2,018,009,131,6A1, 2018. [Google Scholar]
- Destefanis, G.; Marchesi, M.; Ortu, M.; Tonelli, R.; Bracciali, A.; Hierons, R. Smart contracts vulnerabilities: A call for blockchain software engineering? In Proceedings of the 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Campobasso, Italy, 20–28 March 2018; pp. 19–25. [Google Scholar]
- Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 254–269. [Google Scholar]
- Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. Smartcheck: Static analysis of ethereum smart contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain, Gothenburg, Sweden, 27 May–3 June 2018; pp. 9–16. [Google Scholar]
- Kumar, A. A Broad Survey on AI Integration in Blockchain: A Forward-Looking Approach. In Proceedings of the National Conference on Recent Trends of Engineering & Technologies, (RTET-2022) Ramgovind Group of Colleges, Koderma, Jharkhand, India, 5–7 October 2022; pp. 1–38. [Google Scholar]
- Worley, C.; Skjellum, A. Blockchain tradeoffs and challenges for current and emerging applications: Generalization, fragmentation, sidechains, and scalability. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July 2018–3 August 2018; pp. 1582–1587. [Google Scholar]
- Nasir, M.H.; Arshad, J.; Khan, M.M.; Fatima, M.; Salah, K.; Jayaraman, R. Scalable blockchains—A systematic review. Future Gener. Comput. Syst. 2022, 126, 136–162. [Google Scholar] [CrossRef]
- Kumar, H.; Borah, U. Recent Developments in Joint Artificial Technology and Blockchain Technology: Its Potential Use for the Future. Supremo Amic. 2021, 26, 130. [Google Scholar]
- Weng, J.; Weng, J.; Cai, C.; Huang, H.; Wang, C. Golden grain: Building a secure and decentralized model marketplace for MLaaS. IEEE Trans. Depend. Secure Comput. 2021, 19, 3149–3167. [Google Scholar] [CrossRef]
Objective | Year | Cited by | Source | |
---|---|---|---|---|
1 | An in-depth analysis of the COVID-19 pandemic and its management impact using 5G, blockchain, AI, drones, and IoT (Internet of Things) | 2020 | 540 | [26] |
2 | Blockchain for AI: Look at it and come up with a new research problem | 2019 | 349 | [27] |
3 | Decentralizing and accelerating biomedical research and healthcare via the convergence of blockchain and next-generation AI | 2018 | 234 | [28] |
4 | BlockIoTIntelligence: Bringing AI to the IoT with blockchain | 2020 | 180 | [11] |
5 | AI and blockchain coming together in an IoT network to create a sustainable smart city | 2020 | 165 | [29] |
6 | Knowledge trading in edge-AI powered IoT: a consortium-based incentive and effective approach | 2019 | 104 | [30] |
7 | The convergence of blockchain, AI, and 3D printing has the potential to revolutionize how humanitarian supply chains are run. | 2020 | 80 | [31] |
8 | Problems, strategies, and future trends of energy cloud management with blockchain and AI | 2020 | 67 | [32] |
9 | Business transformation via digital innovations: use of cloud, data analytics, blockchain, AI, and other technologies | 2022 | 58 | [33] |
10 | How might AI powered by many sensors and blockchain change the cyclic economy of plastic waste from garbage to cash? | 2020 | 42 | [34] |
Number | Objective | Reference |
---|---|---|
1 | Blockchain-based agriculture 4.0 strategy | [51] |
2 | Investigating supply chain management using blockchains, AI, and the IoT | [52] |
3 | Using blockchains to focus on Food Industry 4.0 | [53] |
Number | Objective | Reference |
---|---|---|
1 | To solve the difficult challenge of data exchange in healthcare | [71] |
2 | Using the IoT and blockchains to provide a novel approach for enhancing biomedical research to benefit from patient information | [28] |
3 | Integrating blockchains, big data, AI, and the IoT for better health and in other industries | [25] |
4 | Security and reliability of blockchain technology for use in healthcare predictive modeling that protects individual privacy | [72] |
5 | Blockchain technology’s potential and possible pitfalls in the healthcare industry | [73] |
6 | Blockchain-enabled IoT intelligence architecture (BlockIoTIntelligence) | [11] |
7 | Data integration with AI and blockchains | [74] |
8 | Using AI and blockchains to focus on PHR | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taherdoost, H. Blockchain Technology and Artificial Intelligence Together: A Critical Review on Applications. Appl. Sci. 2022, 12, 12948. https://doi.org/10.3390/app122412948
Taherdoost H. Blockchain Technology and Artificial Intelligence Together: A Critical Review on Applications. Applied Sciences. 2022; 12(24):12948. https://doi.org/10.3390/app122412948
Chicago/Turabian StyleTaherdoost, Hamed. 2022. "Blockchain Technology and Artificial Intelligence Together: A Critical Review on Applications" Applied Sciences 12, no. 24: 12948. https://doi.org/10.3390/app122412948
APA StyleTaherdoost, H. (2022). Blockchain Technology and Artificial Intelligence Together: A Critical Review on Applications. Applied Sciences, 12(24), 12948. https://doi.org/10.3390/app122412948