Moringa oleifera Lam. as a Bioflocculant for Harvesting Microalgae Grown on Agricultural Wastewaters for Feed Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strain and Culture Conditions
2.2. DNA Analysis of Moringa oleifera
2.3. Preparation of Moringa oleifera Seed Powders and Water Extract
2.4. Effects of Dosage on Harvesting Efficiency
2.5. Effect of pH on the Harvesting Efficiency
2.6. Effect of Rotation Speed and Duration on Flocculation Efficiency
2.7. Characterization of the Harvested Microalgae
2.8. Statistical Analysis
3. Results and Discussion
3.1. Moringa oleifera Identification
3.2. Effect of Flocculant Dosage on Harvesting Efficiency
3.3. Optimization of Harvesting Conditions for M. oleifera Seed Powder
3.3.1. Effect of pH
3.3.2. Effect of Flocculation Speed and Coagulation/Flocculation Duration
3.4. Effect of Preparation of M. oleifera Flocculant on the Harvesting Efficiency
3.5. Effect of Flocculants on the Composition of the Harvested Biomass
3.6. Applicability of Moringa as a Flocculant for Microalgae Grown on Digestate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transparency Market Research. Beta-Carotene Market (Source—Fruits & Vegetables, Algae & Fungi, Synthetic; End Use—Food, Aquaculture Feed, Poultry & Pet Feed, Dietary Supplements, Pharmaceuticals, Cosmetics)—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2019–2027; Transparency Market Research: Pune, India, 2018. [Google Scholar]
- Nagarajan, D.; Lee, D.J.; Chen, C.Y.; Chang, J.S. Resource Recovery from Wastewaters Using Microalgae-Based Approaches: A Circular Bioeconomy Perspective. Bioresour. Technol. 2020, 302, 122817. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Graça, S.; Sousa, C.; Ambrosano, L.; Ribeiro, B.; Botrel, E.P.; Neto, P.C.; Ferreira, A.F.; Silva, C.M. Microalgae Biomass Production Using Wastewater: Treatment and Costs. Scale-up Considerations. Algal Res. 2016, 16, 167–176. [Google Scholar] [CrossRef]
- Sourmelis, S.; Horton, R. A Regulatory Review on the Use of Digestate to Cultivate Algal Biomass for Animal Feed Prepared by NNFCC for Alg-Ad Resource and Material Efficiency Thematic Priority; NNFCC Biocentre, Heslington, York. 2020. Available online: https://www.nnfcc.co.uk/files/mydocs/NNFCC_ALG-AD-Policy-report_FINAL.pdf (accessed on 20 November 2022).
- Fasaei, F.; Bitter, J.H.; Slegers, P.M.; van Boxtel, A.J.B. Techno-Economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Jiang, J.Q. The Role of Coagulation in Water Treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Rwehumbiza, V.M.; Harrison, R.; Thomsen, L. Alum-Induced Flocculation of Preconcentrated Nannochloropsis salina: Residual Aluminium in the Biomass, FAMEs and Its Effects on Microalgae Growth upon Media Recycling. Chem. Eng. J. 2012, 200–202, 168–175. [Google Scholar] [CrossRef]
- Farooq, W.; Moon, M.; Ryu, B.-g.; Suh, W.I.; Shrivastav, A.; Park, M.S.; Mishra, S.K.; Yang, J.W. Effect of Harvesting Methods on the Reusability of Water for Cultivation of Chlorella vulgaris, Its Lipid Productivity and Biodiesel Quality. Algal Res. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Ogbonna, C.N.; Nwoba, E.G. Bio-Based Flocculants for Sustainable Harvesting of Microalgae for Biofuel Production. A Review. Renew. Sustain. Energy Rev. 2021, 139, 110690. [Google Scholar] [CrossRef]
- Laamanen, C.A.; Desjardins, S.M.; Senhorinho, G.N.A.; Scott, J.A. Harvesting Microalgae for Health Beneficial Dietary Supplements. Algal Res. 2021, 54, 102189. [Google Scholar] [CrossRef]
- Nouhi, S.; Kwaambwa, H.M.; Gutfreund, P.; Rennie, A.R. Comparative Study of Flocculation and Adsorption Behaviour of Water Treatment Proteins from Moringa peregrina and Moringa oleifera Seeds. Sci. Rep. 2019, 9, 17945. [Google Scholar] [CrossRef]
- Megersa, M.; Gach, W.; Beyene, A.; Ambelu, A.; Triest, L. Effect of Salt Solutions on Coagulation Performance of Moringa stenopetala and Maerua subcordata for Turbid Water Treatment. Sep. Purif. Technol. 2019, 221, 319–324. [Google Scholar] [CrossRef]
- Sathiyabama, M. Purification of a Coagulant Protein from Seeds of Moringa Concanensis. Water Sci. Technol. Water Supply 2012, 12, 329–333. [Google Scholar] [CrossRef]
- Adeniran, K.A.; Akpenpuun, T.D.; Akinyemi, B.A.; Wasiu, R.A. Effectiveness of Moringa oleifera Seed as a Coagulant in Domestic Wastewater Treatment. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 323–328. [Google Scholar] [CrossRef]
- Ben Salem, H.; Makkar, H.P.S. Defatted Moringa oleifera Seed Meal as a Feed Additive for Sheep. Anim. Feed Sci. Technol. 2009, 150, 27–33. [Google Scholar] [CrossRef]
- Talreja, S.; Tiwari, S. A Critical Overview on Moringa oleifera. J. Glob. Trends Pharm. Sci. 2020, 11, 8451–8457. [Google Scholar]
- Teixeira, C.M.L.L.; Kirsten, F.V.; Teixeira, P.C.N. Evaluation of Moringa oleifera Seed Flour as a Flocculating Agent for Potential Biodiesel Producer Microalgae. J. Appl. Phycol. 2012, 24, 557–563. [Google Scholar] [CrossRef]
- Abdul Hamid, S.H.; Lananan, F.; Khatoon, H.; Jusoh, A.; Endut, A. A Study of Coagulating Protein of Moringa oleifera in Microalgae Bio-Flocculation. Int. Biodeterior. Biodegrad. 2016, 113, 310–317. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; de Araújo, É.J.F.; Silva, J.d.N.; de Freitas, R.M.; de Jesus Costa, N.D.; de Carvalho Oliveira, S.F.; Buenos, J.; Pereira, A.; Pinheiro, J.A.F.; de Abreu, M.C.; et al. Safety and Efficacy of Moringa oleifera Lamarck (1785)—Therapeutic and Toxicological Properties. In Pharmacology and Therapeutics; InTech: London, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Hou, J.; Miao, L. Harvesting Freshwater Microalgae with Natural Polymer Flocculants. Algal Res. 2021, 57, 102358. [Google Scholar] [CrossRef]
- Baharuddin, N.N.D.E.; Aziz, N.S.; Sohif, H.N.; Karim, W.A.A.; Al-Obaidi, J.R.; Basiran, M.N. Marine Microalgae Flocculation Using Plant: The Case of Nannochloropsis oculata and Moringa oleifera. Pak. J. Bot. 2016, 48, 831–840. [Google Scholar]
- Behera, B.; Balasubramanian, P. Natural Plant Extracts as an Economical and Ecofriendly Alternative for Harvesting Microalgae. Bioresour. Technol. 2019, 283, 45–52. [Google Scholar] [CrossRef]
- Hasan, M.; Khalekuzzaman, M.; Hossain, N.; Alamgir, M. Anaerobic Digested Effluent Phycoremediation by Microalgae Co-Culture and Harvesting by Moringa oleifera as Natural Coagulant. J. Clean. Prod. 2021, 292, 126042. [Google Scholar] [CrossRef]
- Silva, D.F.S.; Speranza, L.G.; Quartaroli, L.; Moruzzi, R.B.; Silva, G.H.R. Separation of Microalgae Cultivated in Anaerobically Digested Black Water Using Moringa oleifera Lam Seeds as Coagulant. J. Water Process Eng. 2021, 39, 101738. [Google Scholar] [CrossRef]
- Seelam, J.S.; de Souza, M.F.; Chaerle, P.; Willems, B.; Michels, E.; Vyverman, W.; Meers, E. Maximizing Nutrient Recycling from Digestate for Production of Protein-Rich Microalgae for Animal Feed Application. Chemosphere 2022, 290, 133180. [Google Scholar] [CrossRef] [PubMed]
- Parani, M.; Lakshmi, M.; Ziegenhagen, B.; Fladung, M.; Senthilkumar, P.; Parida, A. Molecular Phylogeny of Mangroves VII. PCR-RFLP of TrnS-PsbC and RbcL Gene Regions in 24 Mangrove and Mangrove-Associate Species. Theor. Appl. Genet. 2000, 100, 454–460. [Google Scholar] [CrossRef]
- Kress, W.J.; Wurdack, K.J.; Zimmer, E.A.; Weigt, L.A.; Janzen, D.H. Use of DNA Barcodes to Identify Flowering Plants. Proc. Natl. Acad. Sci. USA 2005, 102, 8369–8374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K. Estimation of the Number of Nucleotide Substitutions When There Are Strong Transition-Transversion and G+C-Content Biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar]
- Crowe, N.A.; Neathery, M.W.; Miller, W.J.; Muse, L.A.; Crowe, C.T.; Varnadoe, J.L.; Blackmon, D.M. Influence of High Dietary Aluminum on Performance and Phosphorus Bioavailability in Dairy Calves. J. Dairy Sci. 1990, 73, 808–818. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of iron compounds (E1) as feed additives for all animal species: Ferrous carbonate; ferric chloride, hexahydrate; ferrous fumarate; ferrous sulphate, heptahydrate; ferrous sulphate, monohydrate; ferrous chelate of amino acids, hydrate; ferrous chelate of glycine, hydrate, based on a dossier submitted by FEFANA asbl. EFSA J. 2016, 14, 4396. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhu, Y.; Huang, W.; Zhang, C.; Li, T.; Zhang, Y.; Li, A. Evaluation of Flocculation Induced by pH Increase for Harvesting Microalgae and Reuse of Flocculated Medium. Bioresour. Technol. 2012, 110, 496–502. [Google Scholar] [CrossRef]
- Nguyen, T.D.P.; Frappart, M.; Jaouen, P.; Pruvost, J.; Bourseau, P. Harvesting Chlorella vulgaris by Natural Increase in PH: Effect of Medium Composition. Environ. Technol. 2014, 35, 1378–1388. [Google Scholar] [CrossRef]
- Pérez, L.; Salgueiro, J.L.; Maceiras, R.; Cancela, Á.; Sánchez, Á. An Effective Method for Harvesting of Marine Microalgae: PH Induced Flocculation. Biomass Bioenergy 2017, 97, 20–26. [Google Scholar] [CrossRef]
- Abdul Hamid, S.H.; Lananan, F.; Din, W.N.S.; Lam, S.S.; Khatoon, H.; Endut, A.; Jusoh, A. Harvesting Microalgae, Chlorella Sp. by Bio-Flocculation of Moringa oleifera Seed Derivatives from Aquaculture Wastewater Phytoremediation. Int. Biodeterior. Biodegrad. 2014, 95, 270–275. [Google Scholar] [CrossRef]
- Li, S.; Hu, T.; Xu, Y.; Wang, J.; Chu, R.; Yin, Z.; Mo, F.; Zhu, L. A Review on Flocculation as an Efficient Method to Harvest Energy Microalgae: Mechanisms, Performances, Influencing Factors and Perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110005. [Google Scholar] [CrossRef]
- Cassini, S.T.; Francisco, S.A.; Antunes, P.W.P.; Oss, R.N.; Keller, R. Harvesting Microalgal Biomass Grown in Anaerobic Sewage Treatment Effluent by the Coagulation-Flocculation Method: Effect of PH. Braz. Arch. Biol. Technol. 2017, 60. [Google Scholar] [CrossRef] [Green Version]
- Dalvand, A.; Gholibegloo, E.; Ganjali, M.R.; Golchinpoor, N.; Khazaei, M.; Kamani, H.; Hosseini, S.S.; Mahvi, A.H. Comparison of Moringa stenopetala Seed Extract as a Clean Coagulant with Alum and Moringa stenopetala-Alum Hybrid Coagulant to Remove Direct Dye from Textile Wastewater. Environ. Sci. Pollut. Res. 2016, 23, 16396–16405. [Google Scholar] [CrossRef]
- Mataka, L.M.; Henry, E.M.T.; Masamba, W.R.L.; Sajidu, S.M. Lead Remediation of Contaminated Water Using Moringa stenopetala and Moringa oleifera Seed Powder. Int. J. Environ. Sci. Technol. 2006, 3, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Ndabigengesere, A.; Narasiah, K.S.; Talbot, B.G. Active Agents and Mechanism Of Coagulation Of Turbid Waters Using Moringa oleifera. Water Res. 1995, 29, 703–710. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Tao, Y.; Zhang, Y.; Li, A.; Li, T.; Sang, M.; Zhang, C. Freshwater Microalgae Harvested via Flocculation Induced by PH Decrease. Biotechnol. Biofuels Bioprod. 2013, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Shammas, N.K. Coagulation and Flocculation. In Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar]
- Anwar, F.; Rashid, U. Physico-Chemical Characteristics of Moringa oleifera Seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 2007, 39, 1443–1453. [Google Scholar]
- Fotouo-M, H.; du Toit, E.S.; Robbertse, P.J. Germination and Ultrastructural Studies of Seeds Produced by a Fast-Growing, Drought-Resistant Tree: Implications for Its Domestication and Seed Storage. AoB Plants 2015, 7, plv016. [Google Scholar] [CrossRef] [Green Version]
- Lapa Teixeira, C.M.L.; Teixeira, P.C.N. Evaluation of the Flocculation Efficiency of Chlorella vulgaris Mediated by Moringa oleifera Seed under Different Forms: Flour, Seed Cake and Extracts of Flour and Cake. Braz. J. Chem. Eng. 2017, 34, 65–74. [Google Scholar] [CrossRef]
- Okuda, T.; Baes, A.U.; Nishijima, W.; Okada, M. Improvement of Extraction Method of Coagulation Active Components from Moringa oleifera Seed. Water Res. 1999, 33, 3373–3378. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals; National Academies Press: Washington, DC, USA, 2005; ISBN 978-0-309-09654-6. [Google Scholar]
- El-Hedainy, D.K.A.; El-Wakeel, E.; Rashad, A.M.A. Effect of Moringa Seed Meal as a Feed Additive on Performance of Fattening Male Barki Sheep. Int. J. Vet. Sci. Res. 2020, 6, 184–187. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Abdel-Daim, M.M.; Shukry, M.; Nowosad, J.; Kucharczyk, D. Benefits and Applications of Moringa oleifera as a Plant Protein Source in Aquafeed: A Review. Aquaculture 2022, 547, 737369. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Abu Elella, A.A.; Patra, A.K. Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation. Animals 2022, 12, 9926. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, A.P.J.; Teixeira, C.M.L.L.; Faria-Machado, A.F.; Lage, C.L.S. Effects of Bioflocculants on Lipid Extraction, Fatty Acid Composition and Reuse of the Culture Media for Biodiesel Production Using Chlorella vulgaris. Sep. Sci. Technol. 2021, 56, 2609–2618. [Google Scholar] [CrossRef]
- Carlqvist, K.; Arshadi, M.; Mossing, T.; Östman, U.B.; Brännström, H.; Halmemies, E.; Nurmi, J.; Lidén, G.; Börjesson, P. Life-Cycle Assessment of the Production of Cationized Tannins from Norway Spruce Bark as Flocculants in Wastewater Treatment. Biofuels Bioprod. Biorefining 2020, 14, 1270–1285. [Google Scholar] [CrossRef]
Biomass | Mn | Zn | Cu | Cd | Pb | Fe | Al |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Algae + MP | 130.5 | 284.2 | 95.4 | 0.3 | 8 | 10,672.2 | 4614 |
Algae + AS | 37.5 | 141.4 | 35.9 | BQL | BQL | 4844.6 | 29,687 |
Algae + IC | 30.9 | 44.3 | 9.5 | BQL | BQL | 47,240.4 | 1727.2 |
MTL | |||||||
Swine | 1000 | 1000 | 100 | 10 | 10 | 3000 | 1000 |
Cattle | 2000 | 500 | 25 | 10 | 100 | 500 | 1000 |
Poultry | 2000 | 500 | 250 | 10 | 10 | 500 | 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konucu, M.; Tekdal, D.; Eker Develi, E.; Meers, E.; Fernandes de Souza, M. Moringa oleifera Lam. as a Bioflocculant for Harvesting Microalgae Grown on Agricultural Wastewaters for Feed Production. Appl. Sci. 2022, 12, 12968. https://doi.org/10.3390/app122412968
Konucu M, Tekdal D, Eker Develi E, Meers E, Fernandes de Souza M. Moringa oleifera Lam. as a Bioflocculant for Harvesting Microalgae Grown on Agricultural Wastewaters for Feed Production. Applied Sciences. 2022; 12(24):12968. https://doi.org/10.3390/app122412968
Chicago/Turabian StyleKonucu, Merve, Dilek Tekdal, Elif Eker Develi, Erik Meers, and Marcella Fernandes de Souza. 2022. "Moringa oleifera Lam. as a Bioflocculant for Harvesting Microalgae Grown on Agricultural Wastewaters for Feed Production" Applied Sciences 12, no. 24: 12968. https://doi.org/10.3390/app122412968
APA StyleKonucu, M., Tekdal, D., Eker Develi, E., Meers, E., & Fernandes de Souza, M. (2022). Moringa oleifera Lam. as a Bioflocculant for Harvesting Microalgae Grown on Agricultural Wastewaters for Feed Production. Applied Sciences, 12(24), 12968. https://doi.org/10.3390/app122412968