The Extended Galerkin Method for Approximate Solutions of Nonlinear Vibration Equations
Abstract
:Featured Application
Abstract
1. Introduction
2. The Galerkin Formulation
2.1. State of the Art
2.2. The Extended Galerkin Formulation
3. Application Examples
3.1. The Duffing Equation
3.2. The Van Der Pol Equation
3.3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilanko, S.; Monterrubio, L.E.; Mochida, Y. The Rayleigh-Ritz Method for Structural Analysis; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jin, G.Y.; Ye, T.G.; Su, Z. Structural Vibration; Science Press and Springer: Beijing, China, 2015. [Google Scholar]
- Zhao, Q.; Ye, T.Q. Hybrid changeable basis Galerkin technique for nonlinear analysis of structures. Appl. Math. Mech. 1995, 16, 667–674. [Google Scholar]
- Zhang, G.C.; Ding, H.; Chen, L.Q.; Yang, S.P. Galerkin method for steady-state response of nonlinear forced vibration of axially moving beams at supercritical speeds. J. Sound Vib. 2012, 331, 1612–1623. [Google Scholar] [CrossRef]
- Bayat, M.; Pakar, I.; Domairry, G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Lat. Am. J. Solids Struct. 2012, 9, 1–93. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.T.; Hu, Y.T.; Wang, J.; Yang, J.S. Nonlinear coupling between thickness-shear and thickness-stretch modes in a rotated Y-cut quartz resonator. IEEE Trans. Ultras. Ferroelectr. Freq. Control 2009, 56, 220–224. [Google Scholar] [CrossRef]
- Abd-alla, A.; Maugin, G.A. Nonlinear phenomena in magnetostrictive elastic resonators. Int. J. Eng. Sci. 1989, 27, 1613–1619. [Google Scholar] [CrossRef]
- Hu, H.Y. Applied Nonlinear Mechanics; Aviation Industry Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Chen, S.H. Quantitative Analytical Methods of Strong Nonlinear Vibrations; Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Shi, B.Y.; Yang, J.; Wang, J. Forced vibration analysis of multi-degree-of-freedom nonlinear systems with an extended Galerkin method. Mech. Adv. Mater. Struct. 2022. [Google Scholar] [CrossRef]
- Chowdhury, M.S.H.; Hosen, M.A.; Ahmad, K.; Ali, M.Y.; Ismail, A.F. High-order approximate solutions of strongly nonlinear cubic-quantic Duffing oscillator based on the harmonic balance method. Results Phys. 2017, 7, 3962–3967. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, H.Z.; Hu, H.; Zhu, M.Q. An improved KBM method for solving nonlinear vibration equations. J. Vib. Shock 2018, 37, 165–170. (In Chinese) [Google Scholar]
- Amore, P.; Aranda, A. Improved Lindstedt-Poincaré method for the solution of nonlinear problem. J. Sound Vib. 2005, 283, 1115–1136. [Google Scholar] [CrossRef] [Green Version]
- Pirbodaghi, T.; Hoseini, S.H.; Ahmadiana, M.T.; Farrahim, G.H. Duffing equations with cubic and quantic nonlinearities. Comput. Math. Appl. 2009, 57, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.X.; Lim, Y.Q. Approximate solutions of primary resonance for forced Duffing equation by means of the homotopy analysis method. Chin. J. Mech. Eng. 2011, 24, 501–506. [Google Scholar] [CrossRef]
- Wang, J. The extended Rayleigh-Ritz method for an analysis of nonlinear vibrations. Mech. Adv. Mater. Struct. 2021. [Google Scholar] [CrossRef]
- Wu, R.X.; Guo, Y.; Xie, L.T.; Pao, S.Y.; Yong, Y.K.; Wang, J. The acceleration effect on the vibration frequency of thickness-shear mode of an infinite isotropic plate. Mech. Adv. Mater. Struct. 2021. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Chen, L.Q. Nonlinear Vibrations; Higher Education Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Nayfeh, A.H.; Mook, D.T. Nonlinear Oscillations; Wiley: New York, NJ, USA, 1979. [Google Scholar]
- He, J.H. Variational approach for nonlinear oscillators. Chaos Solitons Fract. 2007, 34, 1430–1439. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Desaix, M.; Lisak, M.; Rasch, J. Galerkin approach to approximate solutions of some nonlinear oscillator equations. Am. J. Phys. 2010, 78, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.M.; Gong, X.L.; Wang, J.; Wu, R.X.; Huang, B. An analysis of nonlinear beam vibrations with the extended Ray-leigh-Ritz method. J. Appl. Comput. Mech. 2022. [Google Scholar] [CrossRef]
- Wu, H.X.; Wu, R.X.; Ma, T.F.; Lu, Z.X.; Li, H.L.; Wang, J. A nonlinear analysis of surface acoustic waves in isotropic elastic solids. Theor. App. Mech. Lett. 2022, 100326. [Google Scholar] [CrossRef]
- Alex, E.Z.; Luis, M.P.P.; Daniel, O.T.; Oscar, M.R. Lyapunov equivalent representation form of forced, damped, nonlinear, two degree-of-freedom systems. Appl. Sci. 2018, 8, 649. [Google Scholar]
- Gao, F.B.; Lu, S.P.; Zhang, W. Existence and uniqueness of periodic solutions for a P-Laplacian Duffing equation with a deviating argument. Nonlin. Anal. Theor. Meth. Appl. 2009, 70, 3567–3574. [Google Scholar] [CrossRef]
- Mehri, B.; Ghorashi, M. Periodically forced Duffing’s equation. J. Sound Vib. 1994, 169, 289–295. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations with Applications in Population Dynamical System; Academic Press: New York, NJ, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wu, R. The Extended Galerkin Method for Approximate Solutions of Nonlinear Vibration Equations. Appl. Sci. 2022, 12, 2979. https://doi.org/10.3390/app12062979
Wang J, Wu R. The Extended Galerkin Method for Approximate Solutions of Nonlinear Vibration Equations. Applied Sciences. 2022; 12(6):2979. https://doi.org/10.3390/app12062979
Chicago/Turabian StyleWang, Ji, and Rongxing Wu. 2022. "The Extended Galerkin Method for Approximate Solutions of Nonlinear Vibration Equations" Applied Sciences 12, no. 6: 2979. https://doi.org/10.3390/app12062979
APA StyleWang, J., & Wu, R. (2022). The Extended Galerkin Method for Approximate Solutions of Nonlinear Vibration Equations. Applied Sciences, 12(6), 2979. https://doi.org/10.3390/app12062979