Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health
Abstract
:1. Introduction
2. Disease Surveillance
3. AI and Public Health Disease Surveillance
4. Ethical Considerations
- Beneficence: promoting well-being, preserving dignity, and sustaining the planet
- Non-maleficence: privacy, security and “capability caution”
- Autonomy: the power to decide (whether to decide)
- Justice: promoting prosperity and preserving solidarity
- Explicability: enabling the other principles through intelligibility and accountability.
4.1. Beneficence: Promoting Well-Being, Preserving Dignity, and Sustaining the Planet
4.2. Non-Maleficence: Privacy, Security and “Capability Caution”
4.2.1. Data Sharing
4.2.2. Data Tracking
4.2.3. Data Quality
4.2.4. Algorithm Benchmarking
4.3. Autonomy: The Power to Decide (Whether to Decide)
4.3.1. Specificity
4.3.2. Misinformation
4.3.3. Consent
4.3.4. Data Governance
4.4. Justice: Promoting Prosperity and Preserving Solidarity
4.4.1. Geographic Scope
4.4.2. Human Rights
4.4.3. Predictive Decisions
4.5. Explicability: Enabling the Other Principles through Intelligibility and Accountability
4.5.1. Data Noise
4.5.2. Meeting Regulatory Standards or Policy Requirements
4.5.3. Assessing Risk, Robustness and Vulnerability
4.5.4. Understanding and Verifying the Outputs from a System
5. Key Issues of Normative Ethics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kostkova, P. A roadmap to integrated digital public health surveillance: The vision and the challenges. In Proceedings of the WWW’13: 22nd International World Wide Web Conference, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 687–694. [Google Scholar] [CrossRef]
- McCall, B. COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. Lancet Digit. Health 2020, 2, e166–e167. [Google Scholar] [CrossRef]
- Gordon, D.; Stavrakakis, I.; Gibson, J.P.; Tierney, B.; Becevel, A.; Curley, A.; Collins, M.; O’mahony, W.; O’sullivan, D. Perspectives on computing ethics: A multi-stakeholder analysis. J. Inf. Commun. Ethics Soc. 2022, 20, 72–90. [Google Scholar] [CrossRef]
- Morley, J.; Machado, C.C.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The ethics of AI in health care: A mapping review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef] [PubMed]
- Khemasuwan, D.; Colt, H.G. Applications and challenges of AI-based algorithms in the COVID-19 pandemic. BMJ Innov. 2021, 7, 387–398. [Google Scholar] [CrossRef]
- Piccialli, F.; di Cola, V.S.; Giampaolo, F.; Cuomo, S. The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic. Inf. Syst. Front. A J. Res. Innov. 2021, 23, 1467–1497. [Google Scholar] [CrossRef]
- Koplan, J.P.; Bond, T.C.; Merson, M.H.; Reddy, K.S.; Rodriguez, M.H.; Sewankambo, N.K.; Wasserheit, J.N. Towards a common definition of global health. Lancet. 2009, 373, 1993–1995. [Google Scholar] [CrossRef]
- Last, J.M. A Dictionary of Epidemiology; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- World Health Organization. Disease Outbreaks. 2016. Available online: http://www.emro.who.int/health-topics/disease-outbreaks/index.html (accessed on 12 July 2016).
- Zeng, D.; Cao, Z.; Neill, D.B. Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. Artif. Intell. Med. 2020, 437–453. [Google Scholar] [CrossRef]
- World Health Organization. Communicable Disease Surveillance and Response Systems: Guide to Monitoring and Evaluating. 2006. Available online: https://www.who.int/csr/resources/publications/surveillance/WHO_CDS_EPR_LYO_2006_2.pdf (accessed on 8 November 2021).
- Paquet, C.; Coulombier, D.; Kaiser, R.; Ciotti, M. Epidemic intelligence: A new framework for strengthening disease surveillance in Europe. Eurosurveillance 2006, 11, 212–214. [Google Scholar] [CrossRef]
- Baker, M.G.; Forsyth, A.M. The new International Health Regulations: A revolutionary change in global health security. N. Z. Med. J. 2007, 120, 1267. [Google Scholar]
- Global Security Agenda. Available online: https://ghsagenda.org (accessed on 14 February 2021).
- World Health Organization. International Health Regulations, 2nd ed.; WHO Press: Geneva, Switzerland, 2008; Available online: http://whqlibdoc.who.int/publications/2008/9789241580410_eng.pdf (accessed on 21 October 2021).
- World Health Organization. Outbreak Tookit. Available online: https://www.who.int/emergencies/outbreak-toolkit (accessed on 14 November 2021).
- World Health Organization. Rapid Review of WHO COVID-19 Surveillance: External Review. 2021. Available online: https://www.who.int/publications/m/item/rapid-review-of-who-covid-19-surveillance-external-review-27-october-2021 (accessed on 27 October 2021).
- Kostkova, P.; Saigí-Rubió, F.; Eguia, H.; Borbolla, D.; Verschuuren, M.; Hamilton, C.; Azzopardi-Muscat, N.; Novillo-Ortiz, D. Data and Digital Solutions to Support Surveillance Strategies in the Context of the COVID-19 Pandemic. Front. Digit. Health 2021, 3, 707902. [Google Scholar] [CrossRef]
- Kostkova, P. Disease surveillance data sharing for public health: The next ethical frontiers. Life Sci. Soc. Policy 2018, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, N.P.; Yang, L.; Reilly, A.R.; Hardin, J.E.; Hartley, D.M. Event-based internet biosurveillance: Relation to epidemiological observation. Emerg. Themes Epidemiol. 2012, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shea, J. Digital disease detection: A systematic review of event-based internet biosurveillance systems. Int. J. Med. Inform. 2017, 101, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Agheneza, T.; Denecke, K.; Kirchner, G.; Eckmanns, T. Social Media and Internet-Based Data in Global Systems for Public Health Surveillance: A Systematic Review. Milbank Q. 2014, 92, 7–33. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, K.N.; Peterson, A.E.; Chitale, R.A.; Pavlin, J.A.; Russell, K.L.; Chretien, J.-A. A review of evaluations of electronic event-based biosurveillance systems. PLoS ONE 2014, 9, e111222. [Google Scholar] [CrossRef] [Green Version]
- Chunara, R.; Freifeld, C.; Brownstein, J. New technologies for reporting real-time emergent infections. Parasitology 2012, 139, 1843–1851. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.J.; Chughtai, A.A.; Macintyre, C.R. Utility and potential of rapid epidemic intelligence from internet-based sources. Int. J. Infect. Dis. 2017, 63, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Kostkova, P.; Szomszor, M.; St. Louis, C. #swineflu: The use of twitter as an early warning and risk communication tool in the 2009 swine flu pandemic. ACM Trans. Manag. Inf. Syst. 2014, 5, 1–25. [Google Scholar] [CrossRef]
- Hartley, D.M.; Nelson, N.P.; Walters, R.; Arthur, R.; Yangarber, R.; Madoff, L.; Lightfoot, N. The landscape of international event-based biosurveillance. Emerg. Health Threat. J. 2010, 3, 7096. [Google Scholar] [CrossRef]
- Walters, R.; Harlan, P.; Nelson, N.P.; Hartley, D.M. Data sources for biosurveillance. In Wiley Handbook of Science and Technology for Homeland Security; Voeller, J., Ed.; John Wiley & Sons: New York, NY, USA, 2010; pp. 1–17. [Google Scholar]
- Milinovich, G.J.; Williams, G.M.; Clements, A.C.A.; Hu, W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect. Dis. 2014, 14, 160–168. [Google Scholar] [CrossRef]
- Barboza, P.; Vaillant, L.; Mawudeku, A.; Nelson, N.P.; Hartley, D.; Madoff, L.C.; Linge, J.P.; Collier, N.; Brownstein, J.S.; Yangarber, R.; et al. Evaluation of Epidemic Intelligence Systems Integrated in the Early Alerting and Reporting Project for the Detection of A/H5N1 Influenza Events. PLoS ONE 2013, 8, e57252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, S.F.; Chen, H.; Tisseverasinghe, T.; Yang, Y.; Li, L.; Butt, Z.A. What social media told us in the time of COVID-19: A scoping review. Lancet Digit. Health 2021, 3, e175–e194. [Google Scholar] [CrossRef]
- Bernardo, T.M.; Rajic, A.; Young, I.; Robiadek, K.; Pham, M.T.; Funk, J.A. Scoping review on search queries and social media for disease surveillance: A chronology of innovation. J. Med Internet Res. 2013, 15, e147. [Google Scholar] [CrossRef] [PubMed]
- Guy, S.; Ratzki-Leewing, A.; Bahati, R.; Gwadry-Sridhar, F. Social media: A systematic review to understand the evidence and application in infodemiology. Lect. Notes Inst. Comput. Sci. Soc. Inf. Telecommun. Eng. 2021, 91, 1–8. [Google Scholar] [CrossRef]
- Broniatowski, D.A.; Paul, M.J.; Dredze, M. National and Local Influenza Surveillance through Twitter: An Analysis of the 2012–2013 Influenza Epidemic. PLoS ONE 2013, 8, e83672. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.; Chughtai, A.; Rabhi, F. Use of Mobile Apps for epidemic surveillance and response–availability and gaps. Glob. Biosecurity 2019, 1, 37. [Google Scholar] [CrossRef]
- Owoyemi, A.; Owoyemi, J.; Osiyemi, A.; Boyd, A. Artificial Intelligence for Healthcare in Africa. Front. Digit. Health 2020, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Croxen, M.A.; Hasan, M.R.; Hsiao, W.W.; Hoang, L.M. Infection control in the new age of genomic epidemiology. Am. J. Infect. Control 2017, 45, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-González, A.; Zanin, M.; Menasalvas-Ruiz, E. Public Health and Epidemiology Informatics: Can Artificial Intelligence Help Future Global Challenges? An Overview of Antimicrobial Resistance and Impact of Climate Change in Disease Epidemiology. Yearb. Med Inform. 2019, 28, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Davie, S. Artificial Intelligence in Global Health. Ethic Int. Aff. 2019, 33, 181–192. [Google Scholar] [CrossRef]
- Alessa, A.; Faezipour, M. A review of influenza detection and prediction through social networking sites. Theor. Biol. Med Model. 2018, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluskin, R.T.; Mavinkurve, M.; Varma, J.K. Government leadership in addressing public health priorities: Strides and delays in electronic laboratory reporting in the United States. Am. J. Public Health 2014, 104, e16–e21. [Google Scholar] [CrossRef] [PubMed]
- Szomszor, M.; Kostkova, P.; St Louis, C. Twitter informatics: Tracking and understanding public reaction during the 2009 Swine Flu pandemic. IEEE Comput. Soc. 2011, 1, 320–323. [Google Scholar] [CrossRef]
- Ocampo, A.J.; Chunara, R.; Brownstein, J.S. Using search queries for malaria surveillance, Thailand. Malar. J. 2013, 12, 390. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, W.; Aguilar, J.; Toro, M. Dengue models based on machine learning techniques: A systematic literature review. Artif. Intell. Med. 2021, 119, 102157. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, J. Better Cholera Counts through Machine Learning Models. JAMA 2019, 321, 1343. [Google Scholar] [CrossRef]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef]
- Daughton, A.R.; Chunara, R.; Paul, M.J. Comparison of Social Media, Syndromic Surveillance, and Microbiologic Acute Respiratory Infection Data: Observational Study. JMIR Public Health Surveill. 2020, 6, e14986. [Google Scholar] [CrossRef]
- Smolinski, M.S.; Crawley, A.W.; Baltrusaitis, K.; Chunara, R.; Olsen, J.M.; Wójcik, O.; Santillana, M.; Nguyen, A.; Brownstein, J.S. Flu Near You: Crowdsourced symptom reporting spanning 2 influenza seasons. Am. J. Public Health 2015, 105, 2124–2130. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. COVID-19 Surveillance Guidance: Transition from COVID-19 Emergency Surveillance to Routine Surveillance of Respiratory Pathogens; ECDC Technical Report; ECDC: Stockholm, Sweden, 2021; Available online: https://www.ecdc.europa.eu/en/publications-data/covid-19-surveillance-guidance (accessed on 1 December 2021).
- Lu, F.S.; Hattab, M.W.; Clemente, C.L.; Biggerstaff, M.; Santillana, M. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nat. Commun. 2019, 10, 147. [Google Scholar] [CrossRef]
- Allam, Z.; Dey, G.; Jones, D. Artificial Intelligence (AI) Provided Early Detection of the Coronavirus (COVID-19) in China and Will Influence Future Urban Health Policy Internationally. AI 2020, 1, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Tong, S. Big Data Predicted the Coronavirus Outbreak and Where It Would Spread. Marketplace 2020. Available online: https://www.marketplace.org/2020/02/04/big-data-predicted-coronavirus-outbreak-where-it-maygo-next/ (accessed on 20 March 2020).
- Greene, S.K.; McGough, S.F.; Culp, G.M.; Graf, L.E.; Lipsitch, M.; Menzies, N.A.; Kahn, R. Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data from Early in the Pandemic. JMIR Public Health Surveill. 2021, 7, e25538. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Dredze, M.; Broniatowski, D.A.; Generous, N. Worldwide Influenza Surveillance through Twitter. In Papers of the AAAI, Proceedings of the Workshop on the World Wide Web and Public Health Intelligence, Austlin, TX, USA, 25–26 January 2015; Shaban-Nejad, A., Buckeridge, D.L., Brownstein, J.S., Eds.; AAAI: Palo Alto, CA, USA, 2015; pp. 6–11. Available online: https://www.aaai.org/Workshops/ws15workshops.php#ws16 (accessed on 1 November 2021).
- Kostkova, P.; Mano, V.; Larson, H.J.; Schulz, W.S. Vac medi+board: Analysing vaccine rumours in news and social media. In Proceedings of the DH’16: 6th International Conference on Digital Health Conference, Montréal, QC, Canada, 11–13 April 2016; pp. 163–164. [Google Scholar] [CrossRef]
- Artus, D.; Larson, H.; Kostkova, P. Role of Social Media in vaccination debate about HPV: The VAC Medi+ plus Board study. Eur. J. Public Health 2019, 29, ckz185.682. [Google Scholar] [CrossRef] [Green Version]
- Szomszor, M.; Kostkova, P.; Quincey, E.D. #Swineflu: Twitter predicts swine flu outbreak in 2009. In International Conference on Electronic Healthcare; Springer: Berlin/Heidelberg, Germany, 2010; pp. 18–26. [Google Scholar]
- da Silva, C.C.; de Lima, C.L.; da Silva, A.C.G.; Silva, E.L.; Marques, G.S.; de Araújo, L.J.B.; Júnior, L.A.A.; de Souza, S.B.J.; de Santana, M.A.; Gomes, J.C.; et al. COVID-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting. Front. Public Health 2021, 9, 641253. [Google Scholar] [CrossRef]
- Future Society. Responsible AI and AI in Pandemic Response, with the Global Partnership on AI (GPAI). 2020. Available online: https://thefuturesociety.org/2020/12/17/report-release-with-the-global-partnership-on-ai/ (accessed on 20 March 2020).
- Blasimme, A.; Vayena, E. The Ethics of AI in Biomedical Research, Patient Care and Public Health) In The Oxford Handbook of Ethics of AI; Dubber, M.D., Pasquale, F., Das, S., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 703–718. [Google Scholar] [CrossRef]
- Murphy, K.; Di Ruggiero, E.; Upshur, R.; Willison, D.J.; Malhotra, N.; Cai, J.C.; Malhotra, N.; Lui, V.; Gibson, J. Artificial intelligence for good health: A scoping review of the ethics literature. BMC Med. Ethic 2021, 22, 14. [Google Scholar] [CrossRef]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- OECD. OECD. OECD Framework for the Classification of AI systems. In OECD Digital Economy Papers; No. 323; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- El-Haddadeh, R.; Fadlalla, A.; Hindi, N.M. Is There a Place for Responsible Artificial Intelligence in Pandemics? A Tale of Two Countries. Inf. Syst. Front. A J. Res. Innov. 2021, 1–17. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Queiroz, M.M. Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions. Inf. Syst. Front. 2021, 15, 1–16. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. AI4People-An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.J.; Vasudevan, K.; Pragasam, A.K.; Gunasekaran, K.; Veeraraghavan, B.; Mutreja, A. Evolutionary Tracking of SARS-CoV-2 Genetic Variants Highlights an Intricate Balance of Stabilizing and Destabilizing Mutations. Mbio 2021, 12, e01188-21. [Google Scholar] [CrossRef] [PubMed]
- Zastrow, M. South Korea is reporting intimate details of COVID-19 cases: Has it helped? Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ethical Considerations to Guide the Use of Digital Proximity Tracking Technologies for COVID-19 Contact Tracing. INTERIM Guidance. 2020. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Ethics_Contact_tracing_apps-2020.1 (accessed on 14 November 2021).
- Blasimme, A.; Ferretti, A.; Vayena, E. Digital Contact Tracing Against COVID-19 in Europe: Current Features and Ongoing Developments. Front. Digit. Health 2021, 3, 660823. [Google Scholar] [CrossRef] [PubMed]
- Pisa, M. COVID-19, Information Problems, and Digital Surveillance; Center for Global Development: Washington, DC, USA, 2020; Available online: https://www.cgdev.org/blog/covid-19-information-problems-and-digital-surveillance (accessed on 15 February 2021).
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zeng, D.; Buckeridge, D.L.; Izadi, M.I.; Verma, A.; Okhmatovskaia, A.; Hu, X.; Shen, X.; Cao, Z.; Wang, F.-Y.; et al. AI for Global Disease Surveillance. IEEE Intell. Syst. 2009, 24, 66–82. [Google Scholar] [CrossRef]
- Aiello, A.E.; Renson, A.; Zivich, P.N. Social Media– and Internet-Based Disease Surveillance for Public Health. Annu. Rev. Public Health 2020, 41, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Bardosh, K.; de Vries, D.; Stellmach, D.; Abramowitz, S.; Thorlie, A.; Cremers, L.; Kinsman, J. Towards People-Centered Epidemic Preparedness and Response: From Knowledge to Action; Global Research Collaboration for Infectious Disease Preparedness: London, UK, 2019; Available online: https://www.glopid-r.org/wp-content/uploads/2019/07/towards-people-centered-epidemic-preparedness-and-response-report.pdf (accessed on 1 November 2021).
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Godinho, M.A.; Borda, A.; Kariotis, T.; Molnar, A.; Kostkova, P.; Liaw, S.-T. Knowledge co-creation in participatory policy and practice: Building community through data-driven direct democracy. Big Data Soc. 2021, 8. [Google Scholar] [CrossRef]
- World Health Organization. Health Data Governance Summit. Meeting Report 30 June 2021. Available online: https://www.who.int/publications/m/item/health-data-governance-summit (accessed on 15 February 2021).
- Van Hout, M.C.; Bigland, C.; Murray, N. Scoping the impact of COVID-19 on the nexus of statelessness and health in Council of Europe member states. J. Migr. Health 2021, 4, 100053, Published Correction Appears in J. Migr. Health 2021, 4, 100063. [Google Scholar] [CrossRef]
- Ienca, M.; Vayena, E. On the responsible use of digital data to tackle the COVID-19 pandemic. Nat. Med. 2020, 26, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Dietvorst, B.J.; Simmons, J.P.; Massey, C. Algorithm aversion: People erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 2015, 144, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biran, O.; Cotton, C. Explanation and justification in machine learning: A survey. In Proceedings of the IJCAI-17 workshop on explainable AI (XAI), Melbourne, VIC, Australia, 20 August 2017; pp. 8–13. [Google Scholar]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2019, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Kostkova, P. Disease Surveillance, Digital Futures, and Data-Sharing in a World ‘After’ COVID-19. Global Policy 2021. Available online: https://www.globalpolicyjournal.com/articles/science-and-technology/disease-surveillance-digital-futures-and-data-sharing-world-after (accessed on 1 February 2022).
Global Public Health Intelligence Network (GPHIN)
|
HealthMap
|
Program for Monitoring Emerging Diseases (ProMED)
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borda, A.; Molnar, A.; Neesham, C.; Kostkova, P. Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health. Appl. Sci. 2022, 12, 3890. https://doi.org/10.3390/app12083890
Borda A, Molnar A, Neesham C, Kostkova P. Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health. Applied Sciences. 2022; 12(8):3890. https://doi.org/10.3390/app12083890
Chicago/Turabian StyleBorda, Ann, Andreea Molnar, Cristina Neesham, and Patty Kostkova. 2022. "Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health" Applied Sciences 12, no. 8: 3890. https://doi.org/10.3390/app12083890
APA StyleBorda, A., Molnar, A., Neesham, C., & Kostkova, P. (2022). Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health. Applied Sciences, 12(8), 3890. https://doi.org/10.3390/app12083890