Recoil Control of Deepwater-Drilling Riser with Optimal Guaranteed Cost H∞ Control
Abstract
:1. Introduction
- (i)
- An optimal guaranteed cost recoil control scheme is proposed for the drilling riser system in the event of emergency disconnection. Based on this scheme, the minimum upper bound of the performance index of the riser subject to friction force of drilling fluid discharge as well as heave motion of platform can be achieved.
- (ii)
- The existence conditions of the optimal guaranteed cost recoil controller are derived, and the design algorithm of the recoil controller of the riser is presented. The effectiveness and advantages of the proposed active-recoil control scheme are verified through simulation results.
2. Problem Formulation
2.1. Whole Fluid Column Model of Fluid Discharge and Heave Motion Model of Platform
2.2. Dynamic Model of a Riser-Tension System
2.3. State Space Model of the Riser System and Active-Recoil Control Problem
- The closed-loop system (21) with and is asymptotically stable, and , is the upper bounds of the performance;
- The performance index
3. Design of Optimal Guaranteed Cost Recoil Controller
3.1. The Existence Condition of the Optimal Guaranteed Cost Recoil Controller
3.2. Computation of the Gain Matrix K of the Controller
4. Simulation Results
4.1. Parameters of Deepwater-Drilling Riser System
4.2. Analyses of the Fluid Discharge Model
4.3. Effectiveness of the Optimal Guaranteed Cost Controller
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Li, H.-N.; Hao, H.; Bi, K.; Chen, B.-K. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Eng. Struct. 2018, 165, 441–456. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Li, H.-N. Fragility assessment and optimum design of a steel-concrete frame structure with hybrid energy-dissipated devices under multi-hazards of earthquake and wind. Eng. Struct. 2021, 245, 112878. [Google Scholar] [CrossRef]
- Pan, H.-Y.; Li, H.-N.; Li, C. Seismic behaviors of free-spanning submarine pipelines subjected to multi-support earthquake motions within offshore sites. Ocean Eng. 2021, 237, 109606. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Liu, Z.; Lu, Z. Parametrically excited vibrations of marine riser under random wave forces and earthquake. Adv. Struct. Eng. 2016, 19, 449–462. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Cao, J.; Sheng, L.; Li, C. Numerical and experimental investigation for extreme storm-safe drilling riser. Ship. Offshore Struc. 2021, 1–13. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, G.; Sun, Y.; Xu, L.; Peng, P. Nonlinear dynamic analysis of deepwater drilling risers subjected to random loads. China Ocean Eng. 2008, 22, 683–691. [Google Scholar]
- Rocha, L.A.S.; Junqueira, P.; Roque, J.L. Overcoming deep and ultra deepwater drilling challenges. In Proceedings of the Offshore Technolog Conference, Houston, TX, USA, 5–8 May 2003. OTC-15233-MS. [Google Scholar]
- Su, K.; Butt, S.; Yang, J.; Qiu, H. Coupled dynamic analysis for the riser-conductor of deepwater surface BOP drilling system. Shock. Vib. 2018, 2018, 6568537. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.; Nguyen, D.T.; Quek, S.T.; Sorensen, A.J. Position-moored drilling vessel in level ice by control of riser end angles. Cold Reg. Sci. Technol. 2011, 66, 65–74. [Google Scholar] [CrossRef]
- Yamamoto, M.; Morooka, C.K. Feedback control system for blow-out preventer positioning. Appl. Ocean Res. 2019, 82, 362–369. [Google Scholar] [CrossRef]
- Lang, D.W.; Real, J.; Lane, M. Recent developments in drilling riser disconnect and recoil analysis for deepwater applications. In Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009; pp. 305–318. [Google Scholar]
- Liu, X.; Li, Y.; Zhang, N.; Sun, H.; Chang, Y.; Chen, G.; Xu, L.; Sheng, L. Improved axial dynamic analysis of risers based on finite element method and data-driven models. Ocean Eng. 2020, 214, 107782. [Google Scholar] [CrossRef]
- Pestana, R.G.; Roveri, F.E.; Franciss, R.; Ellwanger, G.B. Marine riser emergency disconnection analysis using scalar elements for tensioner modelling. Appl. Ocean Res. 2016, 59, 83–92. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, D.; Fang, J. Axial dynamic analysis of marine riser in installation. J. Nat. Gas Sci. Eng. 2014, 21, 112–117. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, D. Recoil analysis of deepwater drilling riser after emergency disconnection. Ocean Eng. 2019, 198, 106406. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Liu, Z.; Qu, N.; Hu, P.; Chang, Y.; Chen, G.; Li, C. Dynamic recoil response of tensioner and riser coupled in an emergency disconnection scenario. Ocean Eng. 2022, 247, 110730. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Wang, X.; Qu, N.; Zhang, N.; Chang, Y.; Chen, G. An intelligent recoil controller for riser system based on fuzzy control theory. Int. J. Nav. Archit. Ocean Eng. 2022, 14, 100439. [Google Scholar] [CrossRef]
- Young, R.D.; Hock, C.J.; Karlsen, G.; Miller, J.E. Analysis and design of anti-recoil system for emergency disconnect of a deepwater riser: Case study. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 1992. OTC-6891-MS. [Google Scholar]
- Grønevik, A. Simulation of Drilling Riser Deiconnection-Recoil Analysis. Master’s Thesis, Norwegian Uniersity of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- Li, C.; Fan, H.; Wang, Z.; Ji, R.; Ren, W.; Feng, X. Two methods for simulating mud discharge after emergency disconnection of a drilling riser. J. Nat. Gas Sci. Eng. 2016, 28, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Che, C.-D.; Zhang, W.-J. Discharging flow effect on the recoil response of a deep-water drilling riser after an emergency disconnect. Ocean Eng. 2018, 151, 199–205. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Zhang, S.; Chen, G.; Chang, Y. Study on mud discharge after emergency disconnection of deepwater drilling risers. J. Pet. Sci. Eng. 2020, 190, 107105. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Wang, X.; Zhang, N.; Qiu, N.; Chang, Y.; Chen, G. Recoil control of deepwater drilling riser system based on optimal control theory. Ocean Eng. 2021, 220, 108473. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Wu, L.; Lam, H.K.; Gao, Y. Optimal guaranteed cost sliding-mode control of interval Type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 2018, 26, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Song, T. Decentralized reliable guaranteed cost control for large-scale nonlinear systems using actor-critic network. Neurocomputing 2018, 320, 121–128. [Google Scholar] [CrossRef]
- Wu, J.; Peng, C.; Zhang, J.; Yang, M.; Zhang, B.-L. Guaranteed cost control of hybrid-triggered networked systems with stochastic cyber-attacks. ISA Trans. 2020, 104, 84–92. [Google Scholar] [CrossRef]
- Xie, X.; Lam, J. Guaranteed cost control of periodic piecewise linear time-delay systems. Automatica 2018, 94, 247–282. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, G.; Ding, L. Guaranteed cost control of mobile sensor networks with Markov switching topologies. ISA Trans. 2015, 58, 206–213. [Google Scholar] [CrossRef]
- Wu, Z.-G.; Dong, S.; Shi, P.; Su, H.; Huang, T.; Lu, R. Fuzzy-model-based nonfragile guaranteed cost control of nonlinear markov jump systems. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2388–2397. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, C. Guaranteed cost control of uncertain networked control systems with a hybrid communication scheme. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3126–3135. [Google Scholar] [CrossRef]
- Yang, C.; Du, J.; Cheng, Z.; Wu, Y.; Li, C. Flexibility investigation of a marine riser system based on an accurate and efficient modelling and flexible multibody dynamics. Ocean Eng. 2020, 207, 107407. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|
150,000 | 2.25 | 42 | |||
3,050,000 | 4.28 | 0.4826 | |||
28,082 | 0.2463 | ||||
129,496 | 0.2048 | 1 | |||
23,366 | 0.0405 | 2 |
Case | Discharging Time (s) | Velocity (m/s) | Friction Force ( N) |
---|---|---|---|
Case I | 51.13 | 24.3094 | 5.6475 |
Case II | 114.29 | 11.9815 | 8.0178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-T.; Zhao, Y.-D.; Zhang, B.-L.; Zhang, W.; Su, H. Recoil Control of Deepwater-Drilling Riser with Optimal Guaranteed Cost H∞ Control. Appl. Sci. 2022, 12, 3945. https://doi.org/10.3390/app12083945
Sun Y-T, Zhao Y-D, Zhang B-L, Zhang W, Su H. Recoil Control of Deepwater-Drilling Riser with Optimal Guaranteed Cost H∞ Control. Applied Sciences. 2022; 12(8):3945. https://doi.org/10.3390/app12083945
Chicago/Turabian StyleSun, Yue-Ting, Yan-Dong Zhao, Bao-Lin Zhang, Wei Zhang, and Hao Su. 2022. "Recoil Control of Deepwater-Drilling Riser with Optimal Guaranteed Cost H∞ Control" Applied Sciences 12, no. 8: 3945. https://doi.org/10.3390/app12083945
APA StyleSun, Y.-T., Zhao, Y.-D., Zhang, B.-L., Zhang, W., & Su, H. (2022). Recoil Control of Deepwater-Drilling Riser with Optimal Guaranteed Cost H∞ Control. Applied Sciences, 12(8), 3945. https://doi.org/10.3390/app12083945