A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB
Abstract
:1. Introduction
2. Circuit Analysis and Design
2.1. Inductive Neutralization Technique
2.2. Frequency Staggering Technique
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federal Communications Commission FCC 16–89. Available online: https://docs.fcc.gov/public/attachments/FCC-16-89A1.pdf (accessed on 14 July 2016).
- Spectrum for 4G and 5G; Qualcomm: San Diego, LA, USA; Available online: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf (accessed on 1 December 2017).
- Chen, H.; Chang, D.; Juang, Y.; Lu, S. A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 616–618. [Google Scholar] [CrossRef]
- Joo, S.; Choi, T.; Jung, B. A 2.4-GHz Resistive Feedback LNA in 0.13 μm CMOS. IEEE J. Solid-State Circuits 2009, 44, 3019–3029. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chen, C.Z.; Yang, H.Y.; Chen, C.C.; Lee, J.H.; Huang, G.W.; Lu, S.S. Analysis and Design of a CMOS UWB LNA with Dual-RLC-Branch Wideband Input Matching Network. IEEE Trans. Microw. Theory Tech. 2010, 58, 287–296. [Google Scholar]
- Perumana, B.G.; Zhan, J.C.; Taylor, S.S.; Laskar, J. A 0.5-6 GHz Improved Linearity, Resistive Feedback 90-nm CMOS LNA. In Proceedings of the 2006 IEEE Asian Solid-State Circuits Conference, Hangzhou, China, 13–15 November 2006; pp. 263–266. [Google Scholar]
- Wang, R.; Lin, M.; Yang, C.; Lin, C. A 1V 3.1-10.6 GHz Full-band Cascoded UWB LNA with Resistive Feedback. In Proceedings of the 2007 IEEE Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 December 2007; pp. 1021–1023. [Google Scholar]
- Chen, H.; Zhu, H.; Wu, L.; Che, W.; Xue, Q. A wideband CMOS LNA using transformer-based input matching and pole-tuning technique. IEEE Trans. Microw. Theory Tech. 2021, 69, 3335–3347. [Google Scholar] [CrossRef]
- Qin, P.; Xue, Q. Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 657–659. [Google Scholar] [CrossRef]
- Gonzalez, G. Microwave Transistor Amplifiers Analysis and Design, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Razavi, B. Design of Analog CMOS Integrated Circuits; McGraw-Hill: Boston, MA, USA, 2016; pp. 173–214. [Google Scholar]
- Trinh, V.; Park, J. A 16.3 dBm 14.1% PAE 28-dB Gain W-Band Power Amplifier with Inductive Feedback in 65-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 193–196. [Google Scholar] [CrossRef]
- Lei, H.-W.; Wang, Y.; Chiong, C.-C.; Wang, H. A 2.5–31-GHz high gain LNA in 0.15-μm GaAs pHEMT for radio astronomical application. In Proceedings of the Asia–Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2018; pp. 228–230. [Google Scholar]
- Singh, R.; Mondal, S.; Paramesh, J. A millimeter-wave receiver using a wideband low-noise amplifier with one-port coupled resonator loads. IEEE Trans. Microw. Theory Tech. 2020, 68, 3794–3803. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, F.; Syed, S.; Otto, M.; Bellaouar, A. A low noise figure 28 GHz LNA in 22 nm FDSOI technology. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 207–210. [Google Scholar]
- Gao, L.; Rebeiz, G.M. A 24–43 GHz LNA with 3.1–3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 239–242. [Google Scholar]
- Hedayati, M.K.; Abdipour, A.; Shirazi, R.S.; Cetintepe, C.; Staszewski, R.B. A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans. Circuits Syst. II Express Br. 2018, 65, 1460–1464. [Google Scholar] [CrossRef]
- Elkholy, M.; Shakib, S.; Dunworth, J.; Aparin, V.; Entesari, K. A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 64–66. [Google Scholar] [CrossRef]
- Chauhan, V.; Floyd, B. A 24–44 GHz UWB LNA for 5G cellular frequency bands. In Proceedings of the 2018 11th Global Symposium on Millimeter Waves (GSMM), Boulder, CO, USA, 22–24 May 2018; pp. 1–3. [Google Scholar]
- Yeh, H.; Chiong, C.; Aloui, S.; Wang, H. Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA With Magnetic Coupled Technique. IEEE Trans. Microw. Theory Tech. 2012, 60, 4066–4079. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
L1 | 0.6 nH | C1 | 0.41 pF |
L2 | 0.68 nH | R1 | 200 Ω |
L3 | 0.8 nH | R2 | 1000 Ω |
L4 | 0.45 nH | TL1 | 265 μm |
L5 | 0.3 nH | TL2 | 120 μm |
L6 | 0.7 nH | M1–M3 | 1 × 30 μm |
L7 | 0.2 nH | Vg1 | 1.1 V |
L8 | 0.65 nH | Vg2 | 1.1 V |
L9 | 0.27 nH | Vg3 | 0.9 V |
Lneut | 1.3 nH | Vd1 | 1.1 V |
Cbypass | 1.36 pF | Vd2 | 1.1 V |
Cdc | 1.36 pF | Vd3 | 1.1 V |
Ref. | Technology | Peak Gain (dB) | |S21|3-dB BW (GHz) | |S11|−10 dB BW (GHz) | Gain Flatness over Frequency | IP1dB (dBm) | DC Power Consumption (mW) | Core Chip Area ** |
---|---|---|---|---|---|---|---|---|
This work | 65-nm CMOS | 13.2 | 18.2 (23.5–41.7) | 13.8 (26.3–40.1) | 13 0.2 dB over 26.2–40.2 GHz | −13.2 | 18.6 | 0.37 |
[8] | 65-nm CMOS | 13.5 | 23.4 (19.2–42.6) | 22.1 (16.8–38.9) | 12.65 0.85 dB over 21–41 GHz * | −9.8 | 6.36 | 0.13 |
[14] | 65-nm CMOS | 22.1 | 8.5 (24–32.5) | 10 (30–40 *) | 20.6 1.5 dB over 24–32.5 GHz | −19 | 19.3 | 0.12 |
[15] | 22 nm SOI CMOS | 12.6 | 17 (23–40) | 6 (25–31 *) | 20.6 1.5 dB over 24–32.5 GHz | −6 | 13 | 0.12 |
[16] | 22 nm SOI CMOS | 18.2 | 19 (24–43) | 24 (20–44 *) | 18 1.1 dB over 24–29 GHz | −20.4 | 12.1 | 0.21 |
[17] | 28-nm CMOS | 18.6 | 4.3 (28.2–32.5 *) | 7 (30–37) | 17.1 1.5 dB over 28.2–32.5 GHz | −25 | 9.7 | 0.23 |
[18] | 40-nm CMOS | 18.4 | 9.3 (25–34.3 *) | 14 (26–40) | 16.9 1.5 dB over 25–34.3 GHz * | −13.4 | 21.5 | 0.26 |
[19] | 45 nm SOI CMOS | 20 | 20 (27–47.5 *) | 19 (27–48) | 19 1.5 dB over 27–47.5 GHz | −19 | 58 | 0.2 |
[20] | 90 nm SOI CMOS | 13.8 | 15 (29–44) | 21 (29–50 *) | 12.3 1.5 dB over 29–44 GHz | −10 | 18 | 0.48 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Jeon, S. A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB. Appl. Sci. 2022, 12, 4782. https://doi.org/10.3390/app12094782
Kim B, Jeon S. A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB. Applied Sciences. 2022; 12(9):4782. https://doi.org/10.3390/app12094782
Chicago/Turabian StyleKim, Byungwook, and Sanggeun Jeon. 2022. "A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB" Applied Sciences 12, no. 9: 4782. https://doi.org/10.3390/app12094782
APA StyleKim, B., & Jeon, S. (2022). A Full Ka-Band CMOS Amplifier Using Inductive Neutralization with a Flat Gain of 13 ± 0.2 dB. Applied Sciences, 12(9), 4782. https://doi.org/10.3390/app12094782