Understanding the Tolerance of Different Strains of Human Pathogenic Bacteria to Acidic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Media Preparation and pH Determination
2.3. pH Assays
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, X.; Zhu, X. Biofilm formation and food safety in food industries. Trends Food Sci. Technol. 2009, 20, 407–413. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Wu, Y.E.; Fu, X.; Chang, Z. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol. 2012, 20, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Jay, J.M. Modern Food Microbiology; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with low pH: Molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef] [Green Version]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011, 9, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [Green Version]
- Kanjee, U.; Houry, W.A. Mechanisms of acid resistance in Escherichia coli. Annu. Rev. Microbiol. 2013, 67, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.Y.; Cronan, J.E. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 1999, 33, 249–259. [Google Scholar] [CrossRef]
- Shabala, L.; Ross, T. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Res. Microbiol. 2008, 159, 458–461. [Google Scholar] [CrossRef]
- Foster, J.W. Escherichia coli acid resistance: Tales of an amateur acidophile. Nat. Rev. Microbiol. 2004, 2, 898–907. [Google Scholar] [CrossRef]
- Richard, H.T.; Foster, J.W. Acid resistance in Escherichia coli. Adv. Appl. Microbiol. 2003, 52, 167–186. [Google Scholar] [CrossRef]
- King, T.; Lucchini, S.; Hinton, J.C.; Gobius, K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl. Environ. Microbiol. 2010, 76, 6514–6528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagoba, B.S.; Gandhi, R.C.; Hartalkar, A.R.; Wadher, B.J.; Selkar, S.P. Simple, effective and affordable approach for the treatment of burns infections. Burns 2010, 36, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-borne diseases—The challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139 (Suppl. 1), S3–S15. [Google Scholar] [CrossRef]
- Quested, T.E.; Cook, P.E.; Gorris, L.G.; Cole, M.B. Trends in technology, trade and consumption likely to impact on microbial food safety. Int. J. Food Microbiol. 2010, 139 (Suppl. 1), S29–S42. [Google Scholar] [CrossRef] [Green Version]
- Hongwei, Y.; Zhanpeng, J.; Shaoqi, S.; Tang, W.Z. INT—Dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicol. Environ. Saf. 2002, 53, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Nakai, S.A.; Siebert, K.J. Validation of bacterial growth inhibition models based on molecular properties of organic acids. Int. J. Food Microbiol. 2003, 86, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Phan-Thanh, L.; Mahouin, F.; Alige, S. Acid responses of Listeria monocytogenes. Int. J. Food Microbiol. 2000, 55, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Halstead, F.D.; Rauf, M.; Moiemen, N.S.; Bamford, A.; Wearn, C.M.; Fraise, A.P.; Lund, P.A.; Oppenheim, B.A.; Webber, M.A. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PloS ONE 2015, 10, e0136190. [Google Scholar] [CrossRef] [Green Version]
- Jordan, S.L.; Glover, J.; Malcolm, L.; Thomson-Carter, F.M.; Booth, I.R.; Park, S.F. Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Appl. Environ. Microbiol. 1999, 65, 1308–1311. [Google Scholar] [CrossRef]
- Bushell, F.M.L.; Tonner, P.D.; Jabbari, S.; Schmid, A.K.; Lund, P.A. Synergistic impacts of organic acids and pH on growth of Pseudomonas aeruginosa: A comparison of parametric and ayesian non-parametric methods to model growth. Front. Microbiol. 2018, 9, 3196. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero, A.; Perez-Rodriguez, F.; Carrasco, E.; Fuentes-Alventosa, J.M.; Garcia-Gimeno, R.M.; Zurera, G. Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. Int. J. Food Microbiol. 2009, 133, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.F.; Foster, S.J.; Ingham, E.; Clements, M.O. The Staphylococcus aureus alternative sigma factor ςB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 1998, 180, 6082–6089. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Y.; Dong, Z.; Wang, X.; Fang, C.; Yang, M.; Sun, J.; Xiao, L.; Fang, W.; Song, H. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry. Front. Microbiol. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Rode, T.M.; Moretro, T.; Langsrud, S.; Langsrud, O.; Vogt, G.; Holck, A. Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Can. J. Microbiol. 2010, 56, 777–792. [Google Scholar] [CrossRef]
- Nei, D.; Enomoto, K.; Yamamoto, K. Large-scale gaseous acetic acid treatment to disinfect alfalfa seeds inoculated with Escherichia coli. Foodborne Pathog. Dis. 2014, 11, 332–334. [Google Scholar] [CrossRef]
- Nei, D.; Latiful, B.M.; Enomoto, K.; Inatsu, Y.; Kawamoto, S. Disinfection of radish and alfalfa seeds inoculated with Escherichia coli O157:H7 and Salmonella by a gaseous acetic acid treatment. Foodborne Pathog. Dis. 2011, 8, 1089–1094. [Google Scholar] [CrossRef]
- Nei, D.; Enomoto, K.; Nakamura, N. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria. Food Microbiol. 2015, 49, 226–230. [Google Scholar] [CrossRef]
- Trząskowska, M.; Dai, Y.; Delaquis, P.; Wang, S. Pathogen reduction on mung bean reduction of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes on mung bean using combined thermal and chemical treatments with acetic acid and hydrogen peroxide. Food Microbiol. 2018, 76, 62–68. [Google Scholar] [CrossRef]
- Sun, R.; Vermeulen, A.; Devlieghere, F. Modeling the combined effect of temperature, pH, acetic and lactic acid concentrations on the growth/no growth interface of acid-tolerant Bacillus spores. Int. J. Food Microbiol. 2021, 360, 109419. [Google Scholar] [CrossRef] [PubMed]
- de Moraes Motta Machado, M.C.; Lepaus, B.M.; Bernardes, P.C.; de São José, J.F.B. Ultrasound, acetic acid, and peracetic acid as alternatives sanitizers to chlorine compounds for fresh-cut kale decontamination. Molecules 2022, 27, 7019. [Google Scholar] [CrossRef] [PubMed]
- Sheen, S.; Huang, C.Y.; Chuang, S. Synergistic effect of high hydrostatic pressure, allyl isothiocyanate, and acetic acid on the inactivation and survival of pathogenic Escherichia coli in ground chicken. J. Food Sci. 2022, 87, 16346. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Nature of the Acid | Acid | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | ||||
Gram-positive | S. aureus | Organic | AA | − | − | − | + | |||||
FA | − | − | − | − | * | |||||||
Inorganic | HA | − | − | * | * | * | ||||||
SA | − | − | − | * | ||||||||
Gram-negative | K. pneumoniae | Organic | AA | − | − | − | − | |||||
FA | − | − | − | + | * | |||||||
Inorganic | HA | − | + | |||||||||
SA | − | − | * | |||||||||
E. coli | Organic | AA | − | − | − | + | + | |||||
FA | − | − | − | + | + | |||||||
Inorganic | HA | − | − | |||||||||
SA | − | − | + | * | ||||||||
Acinetobacter sp.. | Organic | AA | − | − | − | − | − | * | ||||
FA | − | − | − | − | − | * | ||||||
Inorganic | HA | − | − | − | + | |||||||
SA | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porto-Figueira, P.; Câmara, J.S.; Vigário, A.M.; Pereira, J.A.M. Understanding the Tolerance of Different Strains of Human Pathogenic Bacteria to Acidic Environments. Appl. Sci. 2023, 13, 305. https://doi.org/10.3390/app13010305
Porto-Figueira P, Câmara JS, Vigário AM, Pereira JAM. Understanding the Tolerance of Different Strains of Human Pathogenic Bacteria to Acidic Environments. Applied Sciences. 2023; 13(1):305. https://doi.org/10.3390/app13010305
Chicago/Turabian StylePorto-Figueira, Priscilla, José S. Câmara, Ana M. Vigário, and Jorge A. M. Pereira. 2023. "Understanding the Tolerance of Different Strains of Human Pathogenic Bacteria to Acidic Environments" Applied Sciences 13, no. 1: 305. https://doi.org/10.3390/app13010305
APA StylePorto-Figueira, P., Câmara, J. S., Vigário, A. M., & Pereira, J. A. M. (2023). Understanding the Tolerance of Different Strains of Human Pathogenic Bacteria to Acidic Environments. Applied Sciences, 13(1), 305. https://doi.org/10.3390/app13010305