Optimized Weighted Ensemble Approach for Enhancing Gold Mineralization Prediction
Abstract
:1. Introduction
2. Method
2.1. Predication Approaches
2.1.1. Geostatistical Technique
Ordinary Kriging
Indicator Kriging
2.1.2. Machine Learning Algorithms in Grade Prediction
Random Forest (RF)
K-Nearest Neighbors (K-NN)
Gaussian Process Regression (GPR)
Decision Tree (DT)
Fully Connected Neural Network (FCN)
2.2. Marine Predators Optimization Algorithm (MPA)
2.3. The Proposed RFKNN-MPA Methodology
2.4. Efficiency Evaluation
3. Results and Discussion
3.1. Case Study Area for Grade Estimation
3.2. Exploratory Analysis of the Data
3.2.1. Data Analysis and Descriptive Statistics
3.2.2. Data Regularization
3.2.3. Outlier Detection and Data Enhancement
3.2.4. The Lithological Analysis
3.3. Variography
3.3.1. Analysis of Grade Variography
3.3.2. Indicator Variography for Spatial Variability Analysis and Modeling
3.4. Block Model Creation and Validation for Resource Estimation
3.5. Data Preparation and Normalization
Experiments with Random Training and Test Partitions
3.6. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehteram, M.; Khozani, Z.S.; Soltani-Mohammadi, S.; Abbaszadeh, M. The Necessity of Grade Estimation BT—Estimating Ore Grade Using Evolutionary Machine Learning Models; Ehteram, M., Khozani, Z.S., Soltani-Mohammadi, S., Abbaszadeh, M., Eds.; Springer Nature: Singapore, 2023; pp. 1–6. ISBN 978-981-19-8106-7. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; p. 561. [Google Scholar]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E. A Review of Soft Computing Technology Applications in Several Mining Problems. Appl. Soft Comput. 2014, 22, 638–651. [Google Scholar] [CrossRef]
- Kanevski, M.; Pozdnukhov, A.; Timonin, V. Machine Learning for Spatial Environmental Data. Theory, Applications and Software; With CD-ROM; EPFL Press: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Asgari Nezhad, Y.; Moradzadeh, A.; Kamali, M.R. A New Approach to Evaluate Organic Geochemistry Parameters by Geostatistical Methods: A Case Study from Western Australia. J. Pet. Sci. Eng. 2018, 169, 813–824. [Google Scholar] [CrossRef]
- Gilardi, N.; Bengio, S. Comparison of Four Machine Learning Algorithms for Spatial Data Analysis. In Mapping Radioactivity in the Environment-Spatial Interpolation Comparison; Office for Official Publications of the European Communities: Luxembourg, 2003; Volume 97, pp. 222–237. [Google Scholar]
- Zaki, M.M.; Chen, S.; Zhang, J.; Feng, F.; Khoreshok, A.A.; Mahdy, M.A.; Salim, K.M. A Novel Approach for Resource Estimation of Highly Skewed Gold Using Machine Learning Algorithms. Minerals 2022, 12, 900. [Google Scholar] [CrossRef]
- Samanta, B.; Bandopadhyay, S.; Ganguli, R.; Dutta, S. A Comparative Study of the Performance of Single Neural Network vs. Adaboost Algorithm Based Combination of Multiple Neural Networks for Mineral Resource Estimation. J. S. Afr. Inst. Min. Metall. 2005, 105, 237–246. [Google Scholar]
- Dutta, S.; Bandopadhyay, S.; Ganguli, R.; Misra, D. Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data. J. Intell. Learn. Syst. Appl. 2010, 2, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.; Samanta, B.; Dutta, S.; Bandopadhyay, S. Evaluation of Artificial Neural Networks and Kriging for the Prediction of Arsenic in Alaskan Bedrock-Derived Stream Sediments Using Gold Concentration Data. Int. J. Min. Reclam. Environ. 2007, 21, 282–294. [Google Scholar] [CrossRef]
- Jafrasteh, B.; Fathianpour, N.; Suárez, A. Comparison of Machine Learning Methods for Copper Ore Grade Estimation. Comput. Geosci. 2018, 22, 1371–1388. [Google Scholar] [CrossRef]
- Kapageridis, I.; Denby, B. Ore Grade Estimation with Modular Neural Network Systems—A Case Study; Panagiotou, G.N., Michalakopoulos, T.N., Eds.; AA Balkema Publishers: Rotterdam, The Netherlands, 1998; p. 52. [Google Scholar]
- Afeni, T.B.; Lawal, A.I.; Adeyemi, R.A. Re-Examination of Itakpe Iron Ore Deposit for Reserve Estimation Using Geostatistics and Artificial Neural Network Techniques. Arab. J. Geosci. 2020, 13, 657. [Google Scholar] [CrossRef]
- Zhang, X.; Song, S.; Li, J.; Wu, C. Robust LS-SVM Regression for Ore Grade Estimation in a Seafloor Hydrothermal Sulphide Deposit. Acta Oceanol. Sin. 2013, 32, 16–25. [Google Scholar] [CrossRef]
- Mahmoudabadi, H.; Izadi, M.; Menhaj, M.B. A Hybrid Method for Grade Estimation Using Genetic Algorithm and Neural Networks. Comput. Geosci. 2009, 13, 91–101. [Google Scholar] [CrossRef]
- Dutta, S.; Misra, D.; Ganguli, R.; Samanta, B.; Bandopadhyay, S. A Hybrid Ensemble Model of Kriging and Neural Network for Ore Grade Estimation. Int. J. Min. Reclam. Environ. 2006, 20, 33–45. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Hezarkhani, A. A Hybrid Neural Networks-Fuzzy Logic-Genetic Algorithm for Grade Estimation. Comput. Geosci. 2012, 42, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, M.; Ghavami Riabi, S.R.; Tokhmechi, B. Estimation of Geochemical Elements Using a Hybrid Neural Network-Gustafson-Kessel Algorithm. J. Min. Environ. 2018, 9, 499–511. [Google Scholar]
- Hariharan, S.; Tirodkar, S.; Porwal, A.; Bhattacharya, A.; Joly, A. Random Forest-Based Prospectivity Modelling of Greenfield Terrains Using Sparse Deposit Data: An Example from the Tanami Region, Western Australia. Nat. Resour. Res. 2017, 26, 489–507. [Google Scholar] [CrossRef]
- Jafrasteh, B.; Fathianpour, N. A Hybrid Simultaneous Perturbation Artificial Bee Colony and Back-Propagation Algorithm for Training a Local Linear Radial Basis Neural Network on Ore Grade Estimation. Neurocomputing 2017, 235, 217–227. [Google Scholar] [CrossRef]
- Kaplan, U.E.; Topal, E. A New Ore Grade Estimation Using Combine Machine Learning Algorithms. Minerals 2020, 10, 847. [Google Scholar] [CrossRef]
- Samson, M.J. Mineral Resource Estimates with Machine Learning and Geostatistics. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2019; pp. 1–112. [Google Scholar] [CrossRef]
- Li, X.; Li, L.H.; Zhang, B.L.; Guo, Q. jin Hybrid Self-Adaptive Learning Based Particle Swarm Optimization and Support Vector Regression Model for Grade Estimation. Neurocomputing 2013, 118, 179–190. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A Nature-Inspired Metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Ben Seghier, M.E.A.; Golafshani, E.M.; Jafari-Asl, J.; Arashpour, M. Metaheuristic-based Machine Learning Modeling of the Compressive Strength of Concrete Containing Waste Glass. Struct. Concr. 2023. [CrossRef]
- Helmi, A.M.; Al-qaness, M.A.A.; Dahou, A.; Abd Elaziz, M. Human Activity Recognition Using Marine Predators Algorithm with Deep Learning. Future Gener. Comput. Syst. 2023, 142, 340–350. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Yu, S.; Zong, X.; Shan, Y. Classification of Urban Green Space Types Using Machine Learning Optimized by Marine Predators Algorithm. Sustainability 2023, 15, 5634. [Google Scholar] [CrossRef]
- McKinley, J.M.; Atkinson, P.M. A Special Issue on the Importance of Geostatistics in the Era of Data Science. Math. Geosci. 2020, 52, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A.; Webster, R. A Tutorial Guide to Geostatistics: Computing and Modelling Variograms and Kriging. Catena 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Olea, R.A. Geostatistics for Engineers and Earth Scientists; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 1461550017. [Google Scholar]
- Dai, L.; Wang, L.; Liang, T.; Zhang, Y.; Li, J.; Xiao, J.; Dong, L.; Zhang, H. Geostatistical Analyses and Co-Occurrence Correlations of Heavy Metals Distribution with Various Types of Land Use within a Watershed in Eastern QingHai-Tibet Plateau, China. Sci. Total Environ. 2019, 653, 849–859. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 3540441425. [Google Scholar]
- Sinclair, A.J.; Blackwell, G.H. Applied Mineral Inventory Estimation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hawkins, D.M.; Rivoirard, J. Introduction to Disjunctive Kriging and Nonlinear Geostatistics. J. Am. Stat. Assoc. 1996, 91(433), 337–340. [Google Scholar] [CrossRef]
- Hohn, M. Geostatistics and Petroleum Geology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; ISBN 041275780X. [Google Scholar]
- Englund, C.; Verikas, A. A Novel Approach to Estimate Proximity in a Random Forest: An Exploratory Study. Expert Syst. Appl. 2012, 39, 13046–13050. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Calderoni, L.; Ferrara, M.; Franco, A.; Maio, D. Indoor Localization in a Hospital Environment Using Random Forest Classifiers. Expert Syst. Appl. 2015, 42, 125–134. [Google Scholar] [CrossRef]
- Zabihi, M.; Pourghasemi, H.R.; Behzadfar, M. Groundwater Potential Mapping Using Shannon’s Entropy and Random Forest Models in the Bojnourd Township. Iran. J. Ecohydrol. 2015, 2, 221–232. [Google Scholar]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide Susceptibility Estimation by Random Forests Technique: Sensitivity and Scaling Issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef] [Green Version]
- Rokach, L. Pattern Classification Using Ensemble Methods; World Scientific: Singapore, 2009; Volume 75, ISBN 978-981-4271-06-6. [Google Scholar]
- MacKay, D.J.C. Gaussian Processes-a Replacement for Supervised Neural Networks? Semant. Sch. 1997. Lecture notes for a tutorial at NIPS. [Google Scholar]
- Firat, M.; Gungor, M. Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour Depth around Bridge Piers. Adv. Eng. Softw. 2009, 40, 731–737. [Google Scholar] [CrossRef]
- Fürnkranz, J. Decision Tree BT—Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2017; pp. 330–335. ISBN 978-1-4899-7687-1. [Google Scholar]
- Rokach, L.; Maimon, O. Decision Trees BT—Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005; pp. 165–192. ISBN 978-0-387-25465-4. [Google Scholar]
- Sutton, C.D. Classification and Regression Trees, Bagging, and Boosting. Handb. Stat. 2005, 24, 303–329. [Google Scholar]
- Wang, Y.-T.; Zhang, X.; Liu, X.-S. Machine Learning Approaches to Rock Fracture Mechanics Problems: Mode-I Fracture Toughness Determination. Eng. Fract. Mech. 2021, 253, 107890. [Google Scholar] [CrossRef]
- Shrivastava, P.; Shukla, A.; Vepakomma, P.; Bhansali, N.; Verma, K. A Survey of Nature-Inspired Algorithms for Feature Selection to Identify Parkinson’s Disease. Comput. Methods Programs Biomed. 2017, 139, 171–179. [Google Scholar] [CrossRef]
- Dutta, S. Predictive Performance of Machine Learning Algorithms for Ore Reserve Estimation in Sparse and Imprecise Data. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2006; p. 189. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of Uniaxial Compressive Strength of Sandstones Using Petrography-Based Models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Kriewaldt, M.; Okasha, H.; Farghally, M. Sukari Gold Mine: Opportunities and Challenges BT—The Geology of the Egyptian Nubian Shield; Hamimi, Z., Arai, S., Fowler, A.-R., El-Bialy, M.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 577–591. ISBN 978-3-030-49771-2. [Google Scholar]
- Available online: https://www.Centamin-Plc-Annual-Report-2022-Web-Ready-Secured.Pdf (accessed on 5 April 2022).
- Bedair, M.; Aref, J.; Bedair, M. Automating Estimation Parameters: A Case Study Evaluating Preferred Paths for Optimisation; International mining geology Conference: Perth, Australia, 2019. [Google Scholar]
- Babakhani, M. Geostatistical Modeling in Presence of Extreme Values. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2014. [Google Scholar]
- Kim, S.M.; Choi, Y.; Park, H.D. New Outlier Top-Cut Method for Mineral Resource Estimation via 3D Hot Spot Analysis of Borehole Data. Minerals 2018, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Agriculture United States Department of Agriculture. Part 631 Geology National Engineering Handbook—Chapter 4 Engineering Classification of Rock Materials; Agriculture United States Department of Agriculture: Washington, DC, USA, 2012. [Google Scholar]
- Emery, X.; Maleki, M. Geostatistics in the Presence of Geological Boundaries: Application to Mineral Resources Modeling. Ore Geol. Rev. 2019, 114, 103124. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Webster, R. Spatial Statistics and Soil Mapping: A Blossoming Partnership under Pressure. Spat. Stat. 2022, 50, 100639. [Google Scholar] [CrossRef]
- Lark, R.M.; Minasny, B. Classical Soil Geostatistics. In Pedometrics; Springer: Cham, Switzerland, 2018; Chapter; pp. 291–340. [Google Scholar]
- Van Groenigen, J.W. The Influence of Variogram Parameters on Optimal Sampling Schemes for Mapping by Kriging. Geoderma 2000, 97, 223–236. [Google Scholar] [CrossRef]
- Vann, J.; Jackson, S.; Bertoli, O. Quantitative Kriging Neighbourhood Analysis for the Mining Geologist-a Description of the Method with Worked Case Examples. In Proceedings of the 5th International Mining Geology Conference, Bendigo, Australia, 17–19 November 2003; Australian Inst Mining & Metallurgy: Melbourne, Australia, 2003; Volume 8, pp. 215–223. [Google Scholar]
- Tercan, A.E.; Sohrabian, B. Multivariate Geostatistical Simulation of Coal Quality Data by Independent Components. Int. J. Coal Geol. 2013, 112, 53–66. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox. User’s Guide MathWorks 2010, 2, 77–81. [Google Scholar]
- Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Greenhill, S.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S. Bayesian Optimization for Adaptive Experimental Design: A Review. IEEE Access 2020, 8, 13937–13948. [Google Scholar] [CrossRef]
N | Min | Max | Mean | Variance | S.D. | CoV | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
27505 | 0.005 | 187 | 0.22 | 2.95 | 1.72 | 7.74 | 64.94 | 6010.3 |
N | Min | Max | Mean | Variance | S.D. | CoV | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
32980 | 0.005 | 10 | 0.18 | 0.43 | 0.69 | 3.72 | 8.9 | 99.87 |
Variable | N | Mean | SD | Variance | Min | Q1 | Median | Q3 | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
VQ | 392 | 0.76 | 1.75 | 3.06 | 0.005 | 0.01 | 0.03 | 0.55 | 10 | 3.26 | 11.2 |
SD | 1742 | 0.08 | 0.34 | 0.12 | 0.005 | 0.005 | 0.01 | 0.03 | 5.5 | 10.80 | 143.4 |
GD | 10,733 | 0.2 | 0.67 | 0.45 | 0.005 | 0.01 | 0.03 | 0.11 | 10 | 8.38 | 92.7 |
GBD | 10,004 | 0.21 | 0.74 | 0.54 | 0.005 | 0.01 | 0.02 | 0.10 | 10 | 8.21 | 86.3 |
DI | 4967 | 0.13 | 0.51 | 0.25 | 0.005 | 0.005 | 0.02 | 0.05 | 10 | 9.91 | 137.3 |
AN | 5142 | 0.08 | 0.46 | 0.21 | 0.005 | 0.005 | 0.01 | 0.03 | 10 | 14.38 | 253.6 |
Direction Model | Type | Nugget (ppm²) | Sill (ppm²) | Range (m) |
---|---|---|---|---|
Omnidirectional | Exponential | 0.41 | 0.48 | 29.2 |
Downhole | 0.31 | 0.88 | 15.6 | |
Directional | 0.37 | 0.51 | 23.4 |
Cut-off | Variogram Model | Nugget Effect | Sill | Range | Azimuth | Dip |
---|---|---|---|---|---|---|
0.3 | Exponential | 0.49 | 0.77 | 17.1 | 50 | −60 |
0.6 | Exponential | 0.54 | 0.75 | 15.67 | 100 | −50 |
0.9 | Exponential | 0.49 | 0.76 | 13.4 | 100 | −50 |
1.5 | Exponential | 0.45 | 0.88 | 14.14 | 110 | −60 |
Metric | R | R2 | MSE | RMSE |
---|---|---|---|---|
OK | 0.32 | 0.104 | 0.40 | 0.63 |
IK | 0.31 | 0.096 | 0.43 | 0.65 |
Variable | N | Mean | SD | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|---|
Test Data | 9894 | 0.175 | 0.655 | 0.0005 | 0.01 | 0.02 | 0.07 | 10 |
Train Data | 23,086 | 0.176 | 0.657 | 0.0005 | 0.01 | 0.02 | 0.07 | 10 |
Model | Hyperparameters |
---|---|
Typical configurations | Five k-folds CV Bayesian optimization Iterations: 30 |
RF | Number of trees = 200 |
K-NN | K = 13 Metric: Euclidean distance |
GPR | Basis function: constant Isotropic Rational Quadratic kernel |
DT | leaf size: 6 Minimum leaf size: 1-9041 |
FCN | Three layers used Iterations: 1000 Activation: ReLU |
RFKNN-MPA | Number of trees = 100 K = 13 |
Metric | RF | K-NN | GPR | DT | FCN | RFKNN-MPA |
---|---|---|---|---|---|---|
R | 0.69 | 0.66 | 0.63 | 0.50 | 0.39 | 0.74 |
R2 | 0.47 | 0.43 | 0.40 | 0.25 | 0.15 | 0.54 |
MSE | 0.36 | 0.47 | 0.48 | 0.51 | 0.58 | 0.31 |
RMSE | 0.67 | 0.69 | 0.69 | 0.74 | 0.78 | 0.59 |
Metric | RF | K-NN | GPR | DT | FCN | RFKNN-MPA |
---|---|---|---|---|---|---|
R | 0.70 | 0.71 | 0.72 | 0.55 | 0.36 | 0.77 |
R2 | 0.49 | 0.497 | 0.52 | 0.29 | 0.13 | 0.597 |
MSE | 0.24 | 0.26 | 0.25 | 0.30 | 0.37 | 0.17 |
RMSE | 0.49 | 0.51 | 0.50 | 0.57 | 0.64 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaki, M.M.; Chen, S.; Zhang, J.; Feng, F.; Qi, L.; Mahdy, M.A.; Jin, L. Optimized Weighted Ensemble Approach for Enhancing Gold Mineralization Prediction. Appl. Sci. 2023, 13, 7622. https://doi.org/10.3390/app13137622
Zaki MM, Chen S, Zhang J, Feng F, Qi L, Mahdy MA, Jin L. Optimized Weighted Ensemble Approach for Enhancing Gold Mineralization Prediction. Applied Sciences. 2023; 13(13):7622. https://doi.org/10.3390/app13137622
Chicago/Turabian StyleZaki, M. M., Shaojie Chen, Jicheng Zhang, Fan Feng, Liu Qi, Mohamed A. Mahdy, and Linlin Jin. 2023. "Optimized Weighted Ensemble Approach for Enhancing Gold Mineralization Prediction" Applied Sciences 13, no. 13: 7622. https://doi.org/10.3390/app13137622
APA StyleZaki, M. M., Chen, S., Zhang, J., Feng, F., Qi, L., Mahdy, M. A., & Jin, L. (2023). Optimized Weighted Ensemble Approach for Enhancing Gold Mineralization Prediction. Applied Sciences, 13(13), 7622. https://doi.org/10.3390/app13137622