Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Conceptual Framework on Vulnerability
2.1.1. Essential Components and Strategic Spaces
2.1.2. Spatial Vulnerability
2.1.3. Sociodemographic Vulnerability
2.1.4. Crisis Management Vulnerability
2.1.5. Territorial Vulnerability
3. Case Study Application
3.1. Historic City Center of Guimarães
3.2. Data and Characteristics Used within the Vulneravility Conceptural Framework
3.2.1. Essential Components and Strategic Spaces
3.2.2. Spatial Vulnerability
3.2.3. Sociodemographic Vulnerability
3.2.4. Crisis Management Vulnerability
4. Results and Discussion
4.1. Essential Components and Strategic Spaces
4.2. Spatial Vulnerability
4.3. Building Technique and Population Vulnerability
4.4. Crisis Management Vulnerability
4.5. Territorial Vulnerability
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bank, W. Urban Development Overview. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 27 June 2023).
- Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J.A.; Fernández, J.G.; Laburu, T.; Lejarazu, A. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- Urbina, O.; Teixeira, E.; Matos, J. Identification of Risk Management Models and Parameters for Critical Infrastructures. In IPW 2020 International Probabilistic Workshop 2020; Springer: Cham, Switzerland, 2021; p. 10. [Google Scholar]
- Urbina, O.; Teixeira, E.; Sousa, H.; Matos, J. Risk Management and Criticality Ranking of Civil Infrastructures—Case Study. In Proceedings of the IABSE Congress 2021 “Structural Engineering for Future Societal Needs”, Ghent, Belgium, 22–24 September 2021. [Google Scholar]
- Nuti, C.; Rasulo, A.; Vanzi, I. Seismic safety of network structures and infrastructures. Struct. Infrastruct. Eng. 2010, 6, 95–110. [Google Scholar] [CrossRef]
- Rasulo, A.; Pelle, A.; Briseghella, B.; Nuti, C. A Resilience-Based Model for the Seismic Assessment of the Functionality of Road Networks Affected by Bridge Damage and Restoration. Infrastructures 2021, 6, 112. [Google Scholar] [CrossRef]
- Urlainis, A.; Shohet, I.M.; Levy, R.; Ornai, D.; Vilnay, O. Damage in Critical Infrastructures Due to Natural and Man-made Extreme Events—A Critical Review. Procedia Eng. 2014, 85, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Pant, R.; Hall, J.W.; Blainey, S.P. Vulnerability assessment framework for interdependent critical infrastructures: Case-study for Great Britain’s rail network. Eur. J. Transp. Infrastruct. Res. 2016, 16, 174–194. Available online: https://eprints.soton.ac.uk/385442/ (accessed on 4 July 2023).
- Monstadt, J.; Schmidt, M. Urban resilience in the making? The governance of critical infrastructures in German cities. Urban Stud. 2019, 56, 2353–2371. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.M.; Baquedano, P.; Graus, S.; Nochebuena, E.; Socarrás, T. Evaluación de riesgo de incendio urbano en el centro histórico de la ciudad de Guimarães. Inf. Construcción 2018, 70, e262. [Google Scholar] [CrossRef] [Green Version]
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Rodrigues, H.; Ferreira, T.M. Assessment and Mitigation of the Fire Vulnerability and Risk in the Historic City Centre of Aveiro, Portugal. Fire 2022, 5, 173. [Google Scholar] [CrossRef]
- Fekete, A. Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands. Int. J. Disaster Risk Sci. 2019, 10, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Fekete, A. Spatial disaster vulnerability and risk assessments: Challenges in their quality and acceptance. Nat. Hazards 2012, 61, 1161–1178. [Google Scholar] [CrossRef]
- Zhang, Z.; McDonnell, K.T.; Zadok, E.; Mueller, K. Visual Correlation Analysis of Numerical and Categorical Data on the Correlation Map. IEEE Trans. Vis. Comput. Graph 2015, 21, 289–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Directorate-General for Territory. Carta Administrativa Oficial de Portugal CAOP 2020. Available online: https://www.dgterritorio.gov.pt/Carta-Administrativa-Oficial-de-Portugal-CAOP-2020 (accessed on 21 March 2022).
- D’Ercole, R.; Metzger, P. Vulnerabilidad del Distrito Metropolitano de Quito. Metodol. Investig. 2006, 23, 109–139. [Google Scholar]
- Rivière, M.; Lenglet, J.; Noirault, A.; Pimont, F.; Dupuy, J.-L. Mapping territorial vulnerability to wildfires: A participative multi-criteria analysis. For. Ecol. Manag. 2023, 539, 121014. [Google Scholar] [CrossRef]
- Neto, J.T.; Ferreira, T.M. Assessing and mitigating vulnerability and fire risk in historic centres: A cost-benefit analysis. J. Cult. Herit. 2020, 45, 279–290. [Google Scholar] [CrossRef]
- Leal, O.U.; Juliá, P.B.; Ferreira, T.; Fekete, A.; Matos, J.C.; Teixeira, E. Integrated Risk Assessment of Critical Civil Infrastructures—A Case Study Proposal for Fire Risk in Northern Portugal. In Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland, 28 August–1 September 2022; Research Publishing: Singapore, 2022. [Google Scholar] [CrossRef]
- Granda, S.; Ferreira, T.M. Assessing Vulnerability and Fire Risk in Old Urban Areas: Application to the Historical Centre of Guimarães. Fire Technol. 2019, 55, 105–127. [Google Scholar] [CrossRef]
- Singh, A.N.; Gupta, M.P.; Ojha, A. Identifying critical infrastructure sectors and their dependencies: An Indian scenario. Int. J. Crit. Infrastruct. Prot. 2014, 7, 71–85. [Google Scholar] [CrossRef]
- Clark, S.S.; Seager, T.P.; Chester, M.V. A capabilities approach to the prioritization of critical infrastructure. Environ. Syst. Decis. 2018, 38, 339–352. [Google Scholar] [CrossRef]
- UNESCO World Heritage Centre. World Cultural Heritage Nomination Document: Historic Center of Guimaraes. 2001. Available online: https://whc.unesco.org/en/list/1031/documents/ (accessed on 26 March 2022).
- Ferrão, J.F.; Afonso, A. A Evolução Da Forma Urbana De Guimarães E A Criação Do Seu Património Edificado. 2006. Available online: https://www.cm-guimaraes.pt/cmguimaraes/uploads/writer_file/document/799/470409.pdf (accessed on 26 March 2022).
- De Guimarães, C.M. Dados abertos (Open Access Data). Available online: https://sig.cm-guimaraes.pt/dadosabertos/ (accessed on 21 February 2022).
- Copernicus Services. Climate Change Data. Available online: https://www.copernicus.eu/pt-pt/servicos/alteracoes-climaticas (accessed on 21 March 2022).
- Câmara Municipal de Guimarães. Plataforma WEBSIG Municipal—Consulta dos PMOT. Available online: http://sig.cm-guimaraes.pt/cgi-bin/wms/PDM (accessed on 26 March 2023).
- Epic WEBGIS Portugal. Available online: http://epic-webgis-portugal.isa.ulisboa.pt/ (accessed on 26 March 2023).
- Ale, B.J.M.; Hartford, D.N.D.; Slater, D.H. Resilience or faith. In Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, Venice, Italy, 1–5 November 2020; Research Publishing: Singapore, 2020. [Google Scholar]
- Instituto Nacional de Estatística (Statistic Portugal). Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados&contexto=bd&selTab=tab2 (accessed on 4 July 2023).
- Ministério Do Equipamento, Do Planeamento E Da Administração DO Território. Diário DA República—I Série-A N.° 295—23-12-1998. Available online: https://files.dre.pt/1s/1998/12/295a00/71007132.pdf (accessed on 26 June 2023).
- Zhang, Y.; Shen, L.; Ren, Y.; Wang, J.; Liu, Z.; Yan, H. How fire safety management attended during the urbanization process in China? J. Clean. Prod. 2019, 236, 117686. [Google Scholar] [CrossRef]
- Mtani, I.W.; Mbuya, E.C. Urban fire risk control: House design, upgrading and replanning. Jàmbá J. Disaster Risk Stud. 2018, 10, a522. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.M.; Vicente, R.; da Silva, J.A.R.M.; Varum, H.; Costa, A.; Maio, R. Urban fire risk: Evaluation and emergency planning. J. Cult. Herit. 2016, 20, 739–745. [Google Scholar] [CrossRef] [Green Version]
Global Factors | Partial Factors | |
---|---|---|
Global Risk Factors | Beginning of the Fire (SFI) | State of conservation of the construction–(PFA1) |
Electrical installations–(PFA2) | ||
Gas installations–(PFA3) | ||
Nature of Fire Loads–(PFA4) | ||
Development and Propagation of Fire in the Building (SFP) | Fire Loads–(PFB1) | |
Fire compartmentation–(PFB2) | ||
Fire detection, alarm, and alert–(PFB3) | ||
Security equipment-(PFB4) | ||
Distance between overlapping spans (PFB5) | ||
Building evacuation (SFE) | Factors inherent to evacuation paths–(PFC1) | |
Building inherent factors–(PFC2) | ||
Correction factors–(PFC3) | ||
Efficiency | Firefighting (SFC) | Internal and external firefighting factors in the building (PFD1) |
Safety teams (PFD2) |
Critical Infrastructure Sector | Driving Power Rank | Hierarchy of Needs Rank |
---|---|---|
Religion/Worship | 1 | 3 |
Transport | 5 | 4 |
Social Service | 2 | 3 |
Sanitation | 2 | 5 |
Health: Pharmacy | 5 | 5 |
Health: Dental Clinic | 4 | 4 |
Education | 2 | 3 |
Culture and Monuments | 3 | 3 |
Commerce (Basic Products) | 2 | 2 |
Administrative | 4 | 5 |
Accommodation | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina, O.; Sousa, H.S.; Fekete, A.; Matos, J.C.; Teixeira, E. Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal. Appl. Sci. 2023, 13, 8881. https://doi.org/10.3390/app13158881
Urbina O, Sousa HS, Fekete A, Matos JC, Teixeira E. Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal. Applied Sciences. 2023; 13(15):8881. https://doi.org/10.3390/app13158881
Chicago/Turabian StyleUrbina, Oscar, Hélder S. Sousa, Alexander Fekete, José Campos Matos, and Elisabete Teixeira. 2023. "Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal" Applied Sciences 13, no. 15: 8881. https://doi.org/10.3390/app13158881
APA StyleUrbina, O., Sousa, H. S., Fekete, A., Matos, J. C., & Teixeira, E. (2023). Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal. Applied Sciences, 13(15), 8881. https://doi.org/10.3390/app13158881