Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Climate Data
2.3. DRAINMOD
2.4. Model Setup
2.5. Processing Output Data
3. Results
3.1. Quality of Model and Data
3.2. Effect of CD on GWT
3.3. Effect of CD on Subsurface Drainage Outflows
3.4. Effect of CD on Surface Runoff
3.5. Effect of CD on Quality Drainage Outflow
4. Discussion
5. Conclusions
- The results indicated that the earliest start of CD practice is the most effective in increasing GWT. In the near future, starting CD practice on 1 March will increase the average GWT by 24–35, 23–28, and 19–25 cm for wet, normal, and dry years for selected climate change prediction models compared to the FD practice. Compared to present climate conditions, the application of CD with an initial GWT of 40 cm b.s.l. will raise water depths by 4% in the near future. In contrast, comparing the start of the CD practice to 15 March, there will be a 2% average GWT rise in the near future;
- The earliest application of CD on 1 March reduced average annual outflow by 52, 44, and 35 mm for wet, normal, and dry years, respectively. Compared to current climatic conditions, when applying CD on 1 March in the near future with an initial GWT of 60 and 80 cm b.s.l. in wet years, drainage outflows will increase by 33% and 80% for the GFDL model, by 30% and 40% for the MPI model, and by 17% and 23% for the UKESM model. These are the results of the increase in the total precipitation predicted by the models for 2021–2050;
- Comparing the surface runoff values obtained to current climate conditions, the MPI, GFDL, and UKESM models predict a significant increase in surface runoff in the near future, which is due to a predicted increase in precipitation. The GFDL model shows surface runoff above 30 mm for all scenarios in wet years. For normal years, the GFDL and UKESM models show a value of 25 mm; meanwhile, the MPI model shows 20 mm. In dry years, the models indicate lower surface runoff values of less than 15 mm;
- Annual NO3–N was reduced by 22, 19, and 15 kg per hectare for wet, normal, and dry years, respectively, in the near future. Among the climate scenarios, the UKESM model predicted higher NO3–N and PO4 leaching values compared to the MPI and GFDL models. The highest reduction close to 100% of the NO3–N and PO4 loads was shown for CD application compared to FD on 1 March due to a reduction in drainage outflow. For the 15 March CD date, individual climate models indicated much greater variability in nutrient reduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Refsgaard, J.C.; Hansen, A.L.; Højberg, A.L.; Olesen, J.E.; Hashemi, F.; Wachniew, P.; Wörman, A.; Bartosova, A.; Stelljes, N.; Chubarenko, B. Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads? Ambio 2019, 48, 1278–1289. [Google Scholar] [CrossRef]
- Noorduijn, S.L.; Refsgaard, J.C.; Petersen, R.J.; Højberg, A.L. Downscaling a national hydrological model to subgrid scale. J. Hydrol. 2021, 603, 126796. [Google Scholar] [CrossRef]
- Seidenfaden, I.K.; Sonnenborg, T.O.; Børgesen, C.D.; Trolle, D.; Olesen, J.E.; Refsgaard, J.C. Impacts of land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties. Sci. Total Environ. 2022, 830, 154671. [Google Scholar] [CrossRef]
- Baltic Marine Environment Protection Commission (HELCOM). State of the Baltic Sea—Second HELCOM Holistic Assessment 2011–2016; Baltic Sea Environment Proceedings 155; HELCOM: Helsinki, Finland, 2018; Available online: http://stateofthebalticsea.helcom.fi/wp-content/uploads/2018/07/HELCOM_State-of-the-Baltic-Sea_Second-HELCOM-holistic-assessment-2011-2016.pdf (accessed on 7 March 2023).
- Pastuszak, M.; Igras, J. Temporal and SPATIAL Differences in Emission of Nitrogen and Phosphorus from Polish Territory to the Baltic Sea; National Marine Fisheries Research Institute: Gdynia/Puławy, Poland, 2012; p. 452.
- Statistical Yearbook of Agriculture; Statistics Poland: Warsaw, Poland, 2022. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2022,6,16.html (accessed on 7 April 2023).
- Topczewska, J.; Krupa, W.; Krupa, S.; Krempa, A. Zrównoważona produkcja zwierzęca wyzwaniem przyszłości. Pol. L. Sustain. Dev. 2022, 26, 59–66. [Google Scholar] [CrossRef]
- Ritzema, H.P.; Nijland, H.J.; Croon, F.W. Subsurface drainage practices: From manual installation to large-scale implementation. Agric. Water Manag. 2006, 86, 60–71. [Google Scholar] [CrossRef]
- Ayars, J.E.; Evans, R.G. Subsurface Drainage—What’s Next? Irrig. Drain. 2015, 64, 378–392. [Google Scholar] [CrossRef]
- Yannopoulos, S.I.; Grismer, M.E.; Bali, K.M.; Angelakis, A.N. Evolution of the materials and methods used for subsurface drainage of agricultural lands from antiquity to the present. Water 2020, 12, 1767. [Google Scholar] [CrossRef]
- De Wit, J.A.; Ritsema, C.J.; van Dam, J.C.; van den Eertwegh, G.A.P.H.; Bartholomeus, R.P. Development of subsurface drainage systems: Discharge–retention–recharge. Agric. Water Manag. 2022, 269, 107677. [Google Scholar] [CrossRef]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J.W. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Blann, K.L.; Anderson, J.L.; Sands, G.R.; Vondracek, B. Effects of Agricultural Drainage on Aquatic Ecosystems: A Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 909–1001. [Google Scholar] [CrossRef]
- Peterson, H.; Williams, M.; Frankenberger, J.; King, K.; McGrath, J.; Moody, L.; Ribaudo, M.; Strock, J.; Johnson, K.; Nelson, N. Reducing the Impacts of Agricultural Nutrients on Water Quality across a Changing Landscape; Issue Paper 64; Council for Agricultural Science and Technology (CAST): Ames, IA, USA, 2019; Available online: https://www.cast-science.org/wp-content/uploads/2019/05/CAST_IP64_Nutrient-Loss.pdf (accessed on 15 May 2023).
- Feset, S.; Strock, J.; Sands, G.; Birr, A. Controlled drainage to improve edge-of-field water quality in Southwest Minnesota, USA. In Proceedings of the 9th International Drainage Symposium Held Jointly with CIGR and CSBE/SCGAB, Quebec City, QC, Canada, 13–16 June 2010. [Google Scholar]
- Williams, W.R.; King, K.W.; Fausey, N.R. Drainage water management effects on tile discharge and water quality. Agric. Water Manag. 2015, 148, 43–51. [Google Scholar] [CrossRef]
- Saadat, S.; Bowling, L.; Frankenberger, J.; Kladivko, E. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage. Water Res. 2018, 142, 196–207. [Google Scholar] [CrossRef]
- Helmers, M.J.; Abendroth, L.; Reinhart, B.; Chighladze, G.; Pease, L.; Bowling, L.; Youssef, M.; Ghane, E.; Ahiablame, L.; Brown, L.; et al. Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast. Agric. Water Manag. 2022, 259, 107265. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, G.; Lu, J.; Zhang, K.; Gao, Y.; Ding, J. Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis. Agric. Water Manag. 2020, 239, 106253. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Børgesen, C.D.; Ovesen, N.B.; Poulsen, J.R.; Hvid, S.K.; Kronvang, B. Controlled drainage as a targeted mitigation measure for nitrogen and phosphorus. J. Environ. Qual. 2019, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Tolimo, M.; Borin, M. Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy. Agric. Water Manag. 2018, 201, 1–10. [Google Scholar] [CrossRef]
- Wesström, I.; Messing, I. Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops. Agric. Water Manag. 2007, 87, 229–240. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Hashemi, F.; Hoffmann, C.C.; Zak, D.; Audet, J.; Kronvang, B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio 2020, 49, 1820–1837. [Google Scholar] [CrossRef]
- Hack-ten Broeke, M.J.D.; Mulder, H.M.; Bartholomeus, R.P.; van Dam, J.C.; Holshof, G.; Hoving, I.E.; Walvoort, D.J.J.; Heinen, M.; Kroes, J.G.; van Bakel, P.J.T.; et al. Quantitative land evaluation implemented in Dutch water management. Geoderma 2019, 338, 536–545. [Google Scholar] [CrossRef]
- Huang, S.; Wortmann, M.; Duethmann, D.; Menz, C.; Shi, F.; Zhao, C.; Su, B.; Krysanova, V. Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China. Agric. Water Manag. 2018, 203, 207–224. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Tang, Q.; Liu, B.; Wada, Y.; Yang, H. Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future 2022, 10, e2021EF002567. [Google Scholar] [CrossRef]
- Harrison, M.T.; Cullen, B.R.; Rawnsley, R.P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. 2016, 148, 135–148. [Google Scholar] [CrossRef]
- Rozemeijer, J.C.; Visser, A.; Borren, W.; Winegram, M.; Van der Velde, Y.; Klein, J.; Broers, H. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport. Hydrol. Earth Syst. Sci. 2016, 20, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Häggblom, O.; Salo, H.; Turunen, M.; Nurminen, J.; Alakukku, L.; Myllys, M.; Koivusalo, H. Impacts of supplementary drainage on the water balance of a poorly drained agricultural field. Agric. Water Manag. 2019, 223, 105568. [Google Scholar] [CrossRef]
- Sojka, M.; Kozłowski, M.; Kęsicka, B.; Wróżyński, R.; Stasik, R.; Napierała, M.; Jaskuła, J.; Liberacki, D. The effect of climate change on controlled drainage effectiveness in the context of groundwater dynamics, surface, and drainage outflows. Central-western Poland case study. Agronomy 2020, 10, 625. [Google Scholar] [CrossRef]
- Salla, A.; Salo, H.; Koivusalo, H. Controlled drainage under two climate change scenarios in a flat high-latitude field. Hydrol. Res. 2022, 53, 14–28. [Google Scholar] [CrossRef]
- Abdelbaki, A. DRAINMOD Simulated Impact of Future Climate Change on Agriculture Drainage Systems. Asian Trans. Eng. 2015, 5, 13–18. Available online: https://www.researchgate.net/profile/Ahmed-Abdelbaki-2/publication/280621855_DRAINMOD_simulated_impact_of_future_climate_change_on_agriculture_drainage_systems/links/55bf4aa708aec0e5f44604da/DRAINMOD-simulated-impact-of-future-climate-change-on-agriculture-drainage-systems.pdf (accessed on 15 May 2023).
- Pease, L.; Fausey, N.R.; Martin, J.F.; Brown, L. Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin. J. Soil Water Conserv. 2017, 72, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Kęsicka, B.; Kozłowski, M.; Stasik, R. Effectiveness of Controlled Tile Drainage in Reducing Outflow and Nitrogen at the Scale of the Drainage System. Water 2023, 15, 1814. [Google Scholar] [CrossRef]
- PN-EN 26777:1999; Jakość Wody—Oznaczanie Azotynów—Metoda Absorpcyjnej Spektrometrii Cząsteczkowej. Polish Committee for Standardization: Warsaw, Poland, 1999. (In Polish)
- PN-EN 1189:2000; Jakość Wody—Oznaczanie Fosforu—Metoda Spektrofotometryczna z Molibdenianem Amonu. Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Lange, S.; Büchner, M. ISIMIP3b Bias-Adjusted Atmospheric Climate Input Data (v1.1). ISIMIP Repository. 2021. Available online: https://data.isimip.org/10.48364/ISIMIP.842396.1 (accessed on 12 May 2023).
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, D. Theory of land drainage. In Drainage of Agricultural Lands: Agronomy Monograph No. 7; Luthin, J.N., Ed.; American Society of Agronomy: Madison, WI, USA, 1957; pp. 139–181. [Google Scholar]
- Green, W.H.; Ampt, G. Studies on Soil Physics. Part I: The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Youssef, M.A.; Chescheir, G.M. DRAINMOD: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1509–1522. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Khalil, A.U.R.; Xu, J.; Hameed, F.; Ali, A.; Rahim, S.F.; Awad, A.; Wei, Q.; Ali, A.M. Controlled drainage, to cope with the adverse impacts of climate change on paddy field’s hydrology: A simulation study using the drainmod model, Kunshan, China. Pak. J. Agric. Sci. 2022, 59, 187–198. [Google Scholar]
- Dayyani, S.; Prasher, S.; Madani, A.; Madramootoo, C. Impact of Climate Change on Drainage Outflow and Water Quality in Eastern Canada. In Proceedings of the 9th International Drainage Symposium Held Jointly with CIGR and CSBE/SCGAB, Québec City Convention Centre, Quebec City, QC, Canada, 13–16 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; pp. 1–12. [Google Scholar]
- Golmohammadi, G.; Rudra, R.; Prasher, S.; Madani, A.; Mohammadi, K.; Goel, P.; Daggupatti, P. Water budget in a tile drained watershed under future climate change using SWATDRAIN model. Climate 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qi, Z.; Xue, L.; Bukovsky, M.; Helmers, M.J. Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Clim. Chang. 2015, 129, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Mehan, S.; Aggarwal, R.; Gitau, M.W.; Flanagan, D.C.; Wallace, C.W.; Frankenberger, J.R. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed. Sci. Total Environ. 2019, 688, 1236–1251. [Google Scholar] [CrossRef]
- Awad, A.; Luo, W.; Zou, J. DRAINMOD simulation of paddy field drainage strategies and adaptation to future climate change in lower reaches of the Yangtze river basin. Irrig. Drain. 2021, 70, 819–831. [Google Scholar] [CrossRef]
- Singh, R.; Helmers, M.J.; Kaleita, A.L.; Takle, E.S. Potential impact of climate change on subsurface drainage in Iowa’s subsurface drained landscapes. J. Irrig. Drain. Eng. 2009, 135, 459–466. [Google Scholar] [CrossRef]
Horizon | Thickness (cm) | Sand/Silt/Clay (%) | Bulk Density (g cm−3) | Organic Carbon Content (g kg−1) | Saturated Water Content (cm3 cm−3) |
---|---|---|---|---|---|
Ap | 36 | 70/21/9 | 1.62 | 14.8 | 0.358 |
Bt | 21 | 64/16/20 | 1.77 | 6.1 | 0.315 |
Cg or Ck | 29 | 67/16/17 | 1.74 | 3.8 | 0.326 |
Ckg | 60 | 64/19/17 | 1.84 | 1.9 | 0.298 |
Horizon | α (cm−1) * | n (-) * | Saturated Hydraulic Conductivity (cm day−1) | Water Drainage Capacity (cm3 cm−3) | Field Capacity (cm3 cm−3) |
Ap | 0.0412 | 1.2967 | 43.5 | 0.127 | 0.231 |
Bt | 0.0511 | 1.1620 | 11.8 | 0.076 | 0.239 |
Cg or Ck | 0.0620 | 1.1910 | 14.8 | 0.098 | 0.228 |
Ckg | 0.0443 | 1.1522 | 7.5 | 0.062 | 0.236 |
Analyses | Methodology | ISO Standard Method | Concentration [mg/L] | |
---|---|---|---|---|
Average | SD | |||
Nitrate nitrogen (NO3–N) | spectrophotometric method | PN-EN 26777:1999 [35] | 42.33 | 17.33 |
Orthophosphate (PO4) | spectrophotometric method | PN-EN 1189:2000 [36] | 1.66 | 1.19 |
Model Name | Institute |
---|---|
GFDL-ESM4 | National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, United States of America |
UKESM1-0-LL | Met Office Hadley Centre, Exeter, United Kingdom |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Hamburg, Germany |
Drainage Variants | Initial GWT (cm b.s.l.) | Average GWT (cm b.s.l.) | ||||||
---|---|---|---|---|---|---|---|---|
Wet | Normal | Dry | ||||||
GFDL | ||||||||
FD | 40 | 153.20 ± 5.50 | h | 153.99 ± 3.58 | e | 157.77 ± 4.04 | g | |
60 | 153.59 ± 5.53 | h | 154.54 ± 3.73 | e | 158.46 ± 4.38 | g | ||
80 | 154.11 ± 5.56 | h | 155.53 ± 4.16 | e | 159.68 ± 5.22 | g | ||
CD | 1.03 | 40 | 112.27 ± 8.08 | a | 121.36 ± 8.44 | a | 126.86 ± 10.46 | a, b |
60 | 117.40 ± 9.10 | a, b, c, d | 131.51 ± 10.10 | a, b, c | 137.03 ± 11.98 | b, c, d | ||
80 | 127.34 ± 11.00 | b, c, d, e | 143.41 ± 10.94 | c, d, e | 149.08 ± 12.36 | d, e, f, g | ||
15.03 | 40 | 140.55 ± 11.17 | e, f, g, h | 147.54 ± 8.41 | d, e | 152.82 ± 8.35 | e, f, g | |
60 | 141.34 ± 11.14 | e, f, g, h | 148.53 ± 8.47 | d, e | 153.82 ± 8.49 | e, f, g | ||
80 | 142.49 ± 10.99 | f, g, h | 150.15 ± 8.71 | d, e | 155.53 ± 8.98 | g | ||
1.04 | 40 | 150.54 ± 7.35 | g, h | 151.92 ± 5.17 | e | 157.11 ± 3.98 | g | |
60 | 150.95 ± 7.37 | g, h | 152.50 ± 5.29 | e | 157.81 ± 4.33 | g | ||
80 | 151.48 ± 7.37 | g, h | 153.54 ± 5.71 | e | 159.04 ± 5.19 | g | ||
15.04 | 40 | 151.13 ± 6.47 | g, h | 153.15 ± 3.25 | e | 157.20 ± 3.92 | g | |
60 | 151.52 ± 6.50 | g, h | 153.70 ± 3.39 | e | 157.90 ± 4.26 | g | ||
80 | 152.04 ± 6.53 | g, h | 154.70 ± 3.87 | e | 159.11 ± 5.11 | g | ||
MPI | ||||||||
FD | 40 | 151.90 ± 4.25 | g, h | 155.15 ± 3.66 | e | 155.72 ± 3.92 | g | |
60 | 152.29 ± 4.30 | g, h | 155.63 ± 3.80 | e | 156.27 ± 4.03 | g | ||
80 | 152.90 ± 4.50 | h | 156.30 ± 4.11 | e | 157.14 ± 4.31 | g | ||
CD | 1.03 | 40 | 113.22 ± 10.54 | a, b | 118.89 ± 7.14 | a | 120.91 ± 10.32 | a |
60 | 119.65 ± 13.48 | a, b, c, d | 126.91 ± 9.83 | a, b | 130.47 ± 13.06 | a, b, c | ||
80 | 130.26 ± 16.36 | d, e, f | 137.46 ± 11.91 | b, c, d | 141.45 ± 15.86 | c, d, e | ||
15.03 | 40 | 115.75 ± 8.66 | a, b, c | 120.04 ± 6.53 | a | 121.93 ± 8.81 | a | |
60 | 121.05 ± 12.34 | a, b, c, d | 127.31 ± 9.27 | a, b | 131.01 ± 12.06 | a, b, c | ||
80 | 130.03 ± 15.16 | c, d, e, f | 137.60 ± 11.70 | b, c, d | 141.96 ± 14.73 | c, d, e, f | ||
1.04 | 40 | 150.45 ± 4.58 | g, h | 153.90 ± 4.83 | e | 153.42 ± 6.91 | e, f, g | |
60 | 150.85 ± 4.64 | g, h | 154.37 ± 4.95 | e | 154.06 ± 6.96 | e, f, g | ||
80 | 151.46 ± 4.86 | g, h | 155.05 ± 5.21 | e | 155.09 ± 7.12 | f, g | ||
15.04 | 40 | 151.24 ± 4.17 | g, h | 154.55 ± 3.57 | e | 155.42 ± 3.88 | f, g | |
60 | 151.63 ± 4.22 | g, h | 155.03 ± 3.71 | e | 155.97 ± 3.99 | g | ||
80 | 152.24 ± 4.43 | g, h | 155.70 ± 4.01 | e | 156.84 ± 4.28 | g | ||
UKESM | ||||||||
FD | 40 | 151.72 ± 2.89 | g, h | 152.96 ± 4.51 | e | 155.96 ± 4.20 | g | |
60 | 152.11 ± 2.92 | g, h | 153.35 ± 4.51 | e | 156.56 ± 4.43 | g | ||
80 | 152.65 ± 2.97 | g, h | 153.93 ± 4.51 | e | 157.59 ± 4.99 | g | ||
CD | 1.03 | 40 | 117.67 ± 4.85 | a, b, c, d | 120.11 ± 8.54 | a | 127.00 ± 9.00 | a, b |
60 | 127.29 ± 7.23 | b, c, d, e | 127.66 ± 12.54 | a, b | 137.49 ± 9.87 | b, c, d | ||
80 | 138.38 ± 9.43 | e, f, g | 137.24 ± 16.30 | b, c, d | 149.71 ± 9.90 | d, e, f, g | ||
15.03 | 40 | 145.71 ± 11.25 | g, h | 143.50 ± 11.67 | c, d, e | 153.05 ± 7.87 | e, f, g | |
60 | 146.64 ± 11.22 | g, h | 144.44 ± 11.85 | c, d, e | 154.11 ± 7.90 | e, f, g | ||
80 | 148.08 ± 11.13 | g, h | 145.98 ± 12.28 | d, e | 155.96 ± 7.99 | g | ||
1.04 | 40 | 151.39 ± 6.81 | g, h | 151.67 ± 8.24 | e | 157.40 ± 3.54 | g | |
60 | 151.85 ± 6.86 | g, h | 152.17 ± 8.27 | e | 158.08 ± 3.81 | g | ||
80 | 152.54 ± 6.94 | g, h | 153.04 ± 8.42 | e | 159.31 ± 4.39 | g | ||
15.04 | 40 | 152.78 ± 4.35 | h | 153.66 ± 4.43 | e | 157.53 ± 3.42 | g | |
60 | 153.24 ± 4.40 | h | 154.14 ± 4.46 | e | 158.20 ± 3.70 | g | ||
80 | 153.92 ± 4.46 | h | 154.94 ± 4.57 | e | 159.40 ± 4.31 | g |
Drainage Variants | Initial GWT (cm b.s.l.) | Average Subsurface Drainage Outflows (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Wet | Normal | Dry | ||||||
GFDL | ||||||||
FD | 40 | 75.43 ± 14.53 | l | 51.14 ± 14.01 | g, h, i, j | 48.64 ± 14.96 | j, k, l, m | |
60 | 58.83 ± 14.53 | h, i, j, k, l | 34.73 ± 13.75 | e, f, g, h | 32.41 ± 14.50 | e, f, g, h, i, j, k, l | ||
80 | 40.99 ± 14.46 | e, f, g, h, i | 17.61 ± 13.00 | a, b, c, d, e, f | 15.61 ± 13.50 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 1.08 ± 0.20 | a | 0.95 ± 0.21 | a, b | 0.97 ± 0.30 | a |
60 | 0.93 ± 0.19 | a | 0.63 ± 0.16 | a, b | 0.64 ± 0.20 | a | ||
80 | 0.72 ± 0.27 | a | 0.35 ± 0.18 | a | 0.33 ± 0.20 | a | ||
15.03 | 40 | 57.76 ± 10.08 | h, i, j, k, l | 42.11 ± 6.78 | f, g, h, i | 41.71 ± 7.52 | h, i, j, k, l, m | |
60 | 41.80 ± 9.97 | e, f, g, h, i | 26.40 ± 6.64 | a, b, c, d, e, f, g | 26.00 ± 7.29 | d, e, f, g, h, i, j | ||
80 | 25.01 ± 9.37 | a, b, c, d, e, f | 10.27 ± 6.04 | a, b, c, d, e | 9.98 ± 6.53 | a, b, c, d, e | ||
1.04 | 40 | 73.99 ± 13.96 | l | 49.11 ± 11.48 | g, h, i, j | 48.47 ± 14.82 | i, j, k, l, m | |
60 | 57.40 ± 13.97 | h, i, j, k, l | 32.75 ± 11.23 | d, e, f, g | 32.27 ± 14.34 | e, f, g, h, i, j, k, l | ||
80 | 39.60 ± 13.88 | d, e, f, g, h, i | 15.71 ± 10.49 | a, b, c, d, e, f | 15.49 ± 13.33 | a, b, c, d, e, f | ||
15.04 | 40 | 74.74 ± 13.78 | l | 51.14 ± 14.01 | g, h, i, j | 48.64 ± 14.96 | j, k, l, m | |
60 | 58.13 ± 13.79 | h, i, j, k, l | 34.73 ± 13.75 | e, f, g, h | 32.41 ± 14.50 | e, f, g, h, i, j, k, l | ||
80 | 40.30 ± 13.72 | e, f, g, h, i | 17.61 ± 13.00 | a, b, c, d, e, f | 15.61 ± 13.50 | a, b, c, d, e, f, g | ||
MPI | ||||||||
FD | 40 | 71.70 ± 23.40 | k, l | 64.33 ± 17.92 | i, j | 58.13 ± 22.29 | m | |
60 | 55.05 ± 23.35 | g, h, i, j, k, l | 47.76 ± 17.65 | g, h, i, j | 41.74 ± 22.22 | h, i, j, k, l, m | ||
80 | 37.33 ± 22.99 | c, d, e, f, g, h | 30.12 ± 17.10 | d, e, f, g | 24.41 ± 21.88 | b, c, d, e, f, g, h | ||
CD | 1.03 | 40 | 1.10 ± 0.24 | a | 1.04 ± 0.22 | a, b | 0.96 ± 0.33 | a |
60 | 0.91 ± 0.28 | a | 0.75 ± 0.23 | a, b | 0.67 ± 0.20 | a | ||
80 | 0.56 ± 0.36 | a | 0.47 ± 0.21 | a, b | 0.37 ± 0.14 | a | ||
15.03 | 40 | 13.19 ± 12.89 | a, b, c | 6.41 ± 8.36 | a, b, c, d | 4.91 ± 8.94 | a, b, c, d | |
60 | 6.00 ± 9.11 | a, b | 2.83 ± 4.98 | a, b, c | 2.69 ± 6.24 | a, b, c | ||
80 | 2.14 ± 4.85 | a | 0.99 ± 1.82 | a, b | 1.46 ± 3.42 | a, b | ||
1.04 | 40 | 70.38 ± 21.96 | j, k, l | 63.36 ± 16.22 | i, j | 54.89 ± 21.63 | l, m | |
60 | 53.73 ± 21.91 | g, h, i, j, k, l | 46.80 ± 15.93 | g, h, i, j | 38.64 ± 21.48 | g, h, i, j, k, l, m | ||
80 | 36.02 ± 21.55 | c, d, e, f, g, h | 29.17 ± 15.35 | c, d, e, f, g | 21.86 ± 20.98 | a, b, c, d, e, f, g, h | ||
15.04 | 40 | 71.70 ± 23.40 | k, l | 64.33 ± 17.92 | i, j | 58.11 ± 22.27 | m | |
60 | 55.05 ± 23.35 | g, h, i, j, k, l | 47.76 ± 17.65 | g, h, i, j | 41.72 ± 22.19 | h, i, j, k, l, m | ||
80 | 37.33 ± 22.99 | c, d, e, f, g, h | 30.12 ± 17.10 | d, e, f, g | 24.39 ± 21.86 | b, c, d, e, f, g, h | ||
UKESM | ||||||||
FD | 40 | 62.96 ± 14.71 | i, j, k, l | 69.67 ± 25.55 | j | 51.20 ± 12.62 | k, l, m | |
60 | 46.27 ± 14.66 | e, f, g, h, i, j | 52.98 ± 25.50 | g, h, i, j | 34.82 ± 12.18 | f, g, h, i, j, k, l | ||
80 | 28.41 ± 14.54 | b, c, d, e, f | 35.16 ± 25.32 | e, f, g, h | 17.71 ± 11.18 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 1.20 ± 0.31 | a | 1.06 ± 0.26 | a, b | 0.98 ± 0.30 | a |
60 | 0.82 ± 0.27 | a | 0.79 ± 0.31 | a, b | 0.64 ± 0.18 | a | ||
80 | 0.49 ± 0.21 | a | 0.50 ± 0.28 | a, b | 0.34 ± 0.19 | a | ||
15.03 | 40 | 47.27 ± 10.12 | f, g, h, i, j, k | 47.31 ± 14.32 | g, h, i, j | 41.05 ± 8.02 | i, j, k, l, m | |
60 | 31.44 ± 9.87 | c, d, e, f, g | 31.56 ± 14.05 | d, e, f, g | 25.40 ± 7.78 | c, d, e, f, g, h, i | ||
80 | 15.03 ± 9.14 | a, b, c, d | 15.35 ± 13.31 | a, b, c, d, e | 9.60 ± 6.93 | a, b, c, d, e | ||
1.04 | 40 | 56.05 ± 10.25 | g, h, i, j, k, l | 60.87 ± 23.10 | h, i, j | 47.94 ± 11.61 | h, i, j, k, l, m | |
60 | 39.47 ± 10.18 | d, e, f, g, h, i | 44.37 ± 22.88 | g, h, i, j | 31.69 ± 11.11 | e, f, g, h, i, j, k | ||
80 | 21.85 ± 9.94 | a, b, c, d, e | 27.04 ± 22.21 | b, c, d, e, f, g | 14.91 ± 9.93 | a, b, c, d, e, f | ||
15.04 | 40 | 58.40 ± 13.39 | h, i, j, k, l | 64.63 ± 25.22 | i, j | 48.15 ± 11.66 | i, j, k, l, m | |
60 | 41.81 ± 13.30 | e, f, g, h, i | 48.07 ± 25.04 | g, h, i, j | 31.88 ± 11.17 | e, f, g, h, i, j, k, l | ||
80 | 24.16 ± 13.04 | a, b, c, d, e, f | 30.60 ± 24.47 | d, e, f, g | 15.05 ± 10.02 | a, b, c, d, e, f |
Drainage Variants | Initial GWT (cm b.s.l.) | Load NO3–N (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Wet | Normal | Dry | ||||||
GFDL | ||||||||
FD | 40 | 31.93 | l | 21.64 | g, h, i, j | 20.59 | j, k, l, m | |
60 | 24.90 | h, i, j, k, l | 14.70 | e, f, g, h | 13.72 | e, f, g, h, i, j, k, l | ||
80 | 17.35 | e, f, g, h, i | 7.45 | a, b, c, d, e, f | 6.61 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 0.46 | a | 0.40 | a, b | 0.41 | a |
60 | 0.39 | a | 0.27 | a, b | 0.27 | a | ||
80 | 0.30 | a | 0.15 | a | 0.14 | a | ||
15.03 | 40 | 24.45 | h, i, j, k, l | 17.82 | f, g, h, i | 17.66 | h, i, j, k, l, m | |
60 | 17.69 | e, f, g, h, i | 11.17 | a, b, c, d, e, f, g | 11.01 | d, e, f, g, h, i, j | ||
80 | 10.59 | a, b, c, d, e, f | 4.35 | a, b, c, d, e | 4.23 | a, b, c, d, e | ||
1.04 | 40 | 31.32 | l | 20.78 | g, h, i, j | 20.52 | i, j, k, l, m | |
60 | 24.29 | h, i, j, k, l | 13.86 | d, e, f, g | 13.66 | e, f, g, h, i, j, k, l | ||
80 | 16.76 | d, e, f, g, h, i | 6.65 | a, b, c, d, e, f | 6.56 | a, b, c, d, e, f | ||
15.04 | 40 | 31.63 | l | 21.64 | g, h, i, j | 20.59 | j, k, l, m | |
60 | 24.61 | h, i, j, k, l | 14.70 | e, f, g, h | 13.72 | e, f, g, h, i, j, k, l | ||
80 | 17.06 | e, f, g, h, i | 7.45 | a, b, c, d, e, f | 6.61 | a, b, c, d, e, f, g | ||
MPI | ||||||||
FD | 40 | 30.35 | k, l | 27.23 | i, j | 24.61 | m | |
60 | 23.30 | g, h, i, j, k, l | 20.21 | g, h, i, j | 17.67 | h, i, j, k, l, m | ||
80 | 15.80 | c, d, e, f, g, h | 12.75 | d, e, f, g | 10.33 | b, c, d, e, f, g, h | ||
CD | 1.03 | 40 | 0.47 | a | 0.44 | a, b | 0.41 | a |
60 | 0.38 | a | 0.32 | a, b | 0.28 | a | ||
80 | 0.24 | a | 0.20 | a, b | 0.16 | a | ||
15.03 | 40 | 5.58 | a, b, c | 2.71 | a, b, c, d | 2.08 | a, b, c, d | |
60 | 2.54 | a, b | 1.20 | a, b, c | 1.14 | a, b, c | ||
80 | 0.91 | a | 0.42 | a, b | 0.62 | a, b | ||
1.04 | 40 | 29.79 | j, k, l | 26.82 | i, j | 23.23 | l, m | |
60 | 22.74 | g, h, i, j, k, l | 19.81 | g, h, i, j | 16.35 | g, h, i, j, k, l, m | ||
80 | 15.25 | c, d, e, f, g, h | 12.35 | c, d, e, f, g | 9.14 | a, b, c, d, e, f, g, h | ||
15.04 | 40 | 30.35 | k, l | 27.23 | i, j | 24.60 | m | |
60 | 23.30 | g, h, i, j, k, l | 20.21 | g, h, i, j | 17.66 | h, i, j, k, l, m | ||
80 | 15.80 | c, d, e, f, g, h | 12.75 | d, e, f, g | 10.32 | b, c, d, e, f, g, h | ||
UKESM | ||||||||
FD | 40 | 26.65 | i, j, k, l | 29.49 | j | 21.67 | k, l, m | |
60 | 19.58 | e, f, g, h, i, j | 22.43 | g, h, i, j | 14.74 | f, g, h, i, j, k, l | ||
80 | 12.03 | b, c, d, e, f | 14.88 | e, f, g, h | 7.50 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 0.51 | a | 0.45 | a, b | 0.41 | a |
60 | 0.35 | a | 0.33 | a, b | 0.27 | a | ||
80 | 0.21 | a | 0.21 | a, b | 0.14 | a | ||
15.03 | 40 | 20.01 | f, g, h, i, j, k | 20.03 | g, h, i, j | 17.38 | h, i, j, k, l, m | |
60 | 13.31 | c, d, e, f, g | 13.36 | d, e, f, g | 10.75 | c, d, e, f, g, h, i | ||
80 | 6.36 | a, b, c, d | 6.50 | a, b, c, d, e | 4.06 | a, b, c, d, e | ||
1.04 | 40 | 23.72 | g, h, i, j, k, l | 25.77 | h, i, j | 20.29 | i, j, k, l, m | |
60 | 16.71 | d, e, f, g, h, i | 18.78 | g, h, i, j | 13.41 | e, f, g, h, i, j, k | ||
80 | 9.25 | a, b, c, d, e | 11.44 | b, c, d, e, f, g | 6.31 | a, b, c, d, e, f | ||
15.04 | 40 | 24.72 | h, i, j, k, l | 27.35 | i, j | 20.38 | i, j, k, l, m | |
60 | 17.10 | e, f, g, h, i | 20.35 | g, h, i, j | 13.49 | e, f, g, h, i, j, k, l | ||
80 | 10.23 | a, b, c, d, e, f | 12.95 | d, e, f, g | 6.37 | a, b, c, d, e, f |
Drainage Variants | Initial GWT (cm b.s.l.) | Load PO4 (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Wet | Normal | Dry | ||||||
GFDL | ||||||||
FD | 40 | 1.25 | l | 0.85 | g, h, i, j | 0.81 | j, k, l, m | |
60 | 0.98 | h, i, j, k, l | 0.58 | e, f, g, h | 0.54 | e, f, g, h, i, j, k, l | ||
80 | 0.68 | e, f, g, h, i | 0.29 | a, b, c, d, e, f | 0.26 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 0.02 | a | 0.02 | a, b | 0.02 | a |
60 | 0.02 | a | 0.01 | a, b | 0.01 | a | ||
80 | 0.01 | a | 0.01 | a | 0.01 | a | ||
15.03 | 40 | 0.96 | h, i, j, k, l | 0.70 | f, g, h, i | 0.69 | h, i, j, k, l, m | |
60 | 0.69 | e, f, g, h, i | 0.44 | a, b, c, d, e, f, g | 0.43 | d, e, f, g, h, i, j | ||
80 | 0.42 | a, b, c, d, e, f | 0.17 | a, b, c, d, e | 0.17 | a, b, c, d, e | ||
1.04 | 40 | 1.23 | l | 0.82 | g, h, i, j | 0.80 | i, j, k, l, m | |
60 | 0.95 | h, i, j, k, l | 0.54 | d, e, f, g | 0.54 | e, f, g, h, i, j, k, l | ||
80 | 0.66 | d, e, f, g, h, i | 0.26 | a, b, c, d, e, f | 0.26 | a, b, c, d, e, f | ||
15.04 | 40 | 1.24 | l | 0.85 | g, h, i, j | 0.81 | j, k, l, m | |
60 | 0.97 | h, i, j, k, l | 0.58 | e, f, g, h | 0.54 | e, f, g, h, i, j, k, l | ||
80 | 0.67 | e, f, g, h, i | 0.29 | a, b, c, d, e, f | 0.26 | a, b, c, d, e, f, g | ||
MPI | ||||||||
FD | 40 | 1.19 | k, l | 1.07 | i, j | 0.97 | m | |
60 | 0.91 | g, h, i, j, k, l | 0.79 | g, h, i, j | 0.69 | h, i, j, k, l, m | ||
80 | 0.62 | c, d, e, f, g, h | 0.50 | d, e, f, g | 0.41 | b, c, d, e, f, g, h | ||
CD | 1.03 | 40 | 0.02 | a | 0.02 | a, b | 0.02 | a |
60 | 0.02 | a | 0.01 | a, b | 0.01 | a | ||
80 | 0.01 | a | 0.01 | a, b | 0.01 | a | ||
15.03 | 40 | 0.22 | a, b, c | 0.11 | a, b, c, d | 0.08 | a, b, c, d | |
60 | 0.10 | a, b | 0.05 | a, b, c | 0.04 | a, b, c | ||
80 | 0.04 | a | 0.02 | a, b | 0.02 | a, b | ||
1.04 | 40 | 1.17 | j, k, l | 1.05 | i, j | 0.91 | l, m | |
60 | 0.89 | g, h, i, j, k, l | 0.78 | g, h, i, j | 0.64 | g, h, i, j, k, l, m | ||
80 | 0.60 | c, d, e, f, g, h | 0.48 | c, d, e, f, g | 0.36 | a, b, c, d, e, f, g, h | ||
15.04 | 40 | 1.19 | k, l | 1.07 | i, j | 0.96 | m | |
60 | 0.91 | g, h, i, j, k, l | 0.79 | g, h, i, j | 0.69 | h, i, j, k, l, m | ||
80 | 0.62 | c, d, e, f, g, h | 0.50 | d, e, f, g | 0.40 | b, c, d, e, f, g, h | ||
UKESM | ||||||||
FD | 40 | 1.05 | i, j, k, l | 1.16 | j | 0.85 | k, l, m | |
60 | 0.77 | e, f, g, h, i, j | 0.88 | g, h, i, j | 0.58 | f, g, h, i, j, k, l | ||
80 | 0.47 | b, c, d, e, f | 0.58 | e, f, g, h | 0.29 | a, b, c, d, e, f, g | ||
CD | 1.03 | 40 | 0.02 | a | 0.02 | a, b | 0.02 | a |
60 | 0.01 | a | 0.01 | a, b | 0.01 | a | ||
80 | 0.01 | a | 0.01 | a, b | 0.01 | a | ||
15.03 | 40 | 0.78 | f, g, h, i, j, k | 0.79 | g, h, i, j | 0.68 | h, i, j, k, l, m | |
60 | 0.52 | c, d, e, f, g | 0.52 | d, e, f, g | 0.42 | c, d, e, f, g, h, i | ||
80 | 0.25 | a, b, c, d | 0.25 | a, b, c, d, e | 0.16 | a, b, c, d, e | ||
1.04 | 40 | 0.93 | g, h, i, j, k, l | 1.01 | h, i, j | 0.80 | i, j, k, l, m | |
60 | 0.66 | d, e, f, g, h, i | 0.74 | g, h, i, j | 0.53 | e, f, g, h, i, j, k | ||
80 | 0.36 | a, b, c, d, e | 0.45 | b, c, d, e, f, g | 0.25 | a, b, c, d, e, f | ||
15.04 | 40 | 0.97 | h, i, j, k, l | 1.07 | i, j | 0.80 | i, j, k, l, m | |
60 | 0.69 | e, f, g, h, i | 0.80 | g, h, i, j | 0.53 | e, f, g, h, i, j, k, l | ||
80 | 0.40 | a, b, c, d, e, f | 0.51 | d, e, f, g | 0.25 | a, b, c, d, e, f |
Drainage Variants | Initial GWT (cm b.s.l.) | Reduction in NO3–N and PO4 (%) | ||||||
---|---|---|---|---|---|---|---|---|
Wet | Normal | Dry | ||||||
GFDL | ||||||||
CD | 1.03 | 40 | 98.51 | g | 98.09 | h | 98.00 | f |
60 | 98.40 | g | 98.06 | h | 97.94 | f | ||
80 | 98.23 | g | 97.58 | h | 97.49 | f | ||
15.03 | 40 | 22.39 | c, d, e | 14.85 | a, b, c, d, e | 11.42 | a, b, c, d | |
60 | 27.51 | d, e | 18.85 | c, d, e | 14.73 | a, b, c, d | ||
80 | 36.86 | e, f | 28.62 | d, e, f | 23.53 | d, e | ||
1.04 | 40 | 1.78 | a, b | 3.06 | a, b, c | 0.31 | a | |
60 | 2.25 | a, b | 4.04 | a, b, c | 0.36 | a | ||
80 | 3.15 | a, b | 6.39 | a, b, c | 0.64 | a, b | ||
15.04 | 40 | 0.75 | a | 0.00 | a | 0.00 | a | |
60 | 0.92 | a | 0.00 | a | 0.00 | a | ||
80 | 1.20 | a | 0.00 | a | 0.00 | a | ||
MPI | ||||||||
CD | 1.03 | 40 | 98.37 | g | 98.32 | h | 98.15 | f |
60 | 98.23 | g | 98.35 | h | 98.06 | f | ||
80 | 98.19 | g | 98.26 | h | 97.76 | f | ||
15.03 | 40 | 85.02 | g | 91.97 | h | 94.14 | f | |
60 | 92.09 | g | 95.67 | h | 95.89 | f | ||
80 | 95.99 | g | 97.45 | h | 96.33 | f | ||
1.04 | 40 | 1.41 | a | 1.05 | a, b | 5.32 | a, b | |
60 | 1.72 | a, b | 1.30 | a, b | 7.18 | a, b, c, d | ||
80 | 2.25 | a, b | 1.76 | a, b | 12.48 | a, b, c, d | ||
15.04 | 40 | 0.00 | a | 0.00 | a | 0.02 | a | |
60 | 0.00 | a | 0.00 | a | 0.03 | a | ||
80 | 0.00 | a | 0.00 | a | 0.04 | a | ||
UKESM | ||||||||
CD | 1.03 | 40 | 98.09 | g | 98.31 | h | 98.10 | f |
60 | 98.21 | g | 98.33 | h | 98.12 | f | ||
80 | 98.14 | g | 98.24 | h | 97.92 | f | ||
15.03 | 40 | 22.96 | c, d, e | 29.51 | e, f | 17.42 | b, c, d | |
60 | 29.22 | d, e, f | 37.27 | f | 22.80 | c, d, e | ||
80 | 43.92 | f | 55.25 | g | 35.73 | e | ||
1.04 | 40 | 9.96 | a, b, c | 12.48 | a, b, c, d | 6.13 | a, b, c | |
60 | 13.26 | a, b, c, d | 16.80 | b, c, d, e | 8.62 | a, b, c, d | ||
80 | 22.48 | c, d, e | 28.84 | d, e, f | 15.67 | a, b, c, d | ||
15.04 | 40 | 7.22 | a, b, c | 7.98 | a, b, c | 5.73 | a, b | |
60 | 9.87 | a, b, c | 10.98 | a, b, c | 8.10 | a, b, c, d | ||
80 | 17.97 | b, c, d | 19.34 | c, d, e | 14.94 | a, b, c, d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kęsicka, B.; Kozłowski, M.; Stasik, R.; Pińskwar, I. Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes. Appl. Sci. 2023, 13, 9077. https://doi.org/10.3390/app13169077
Kęsicka B, Kozłowski M, Stasik R, Pińskwar I. Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes. Applied Sciences. 2023; 13(16):9077. https://doi.org/10.3390/app13169077
Chicago/Turabian StyleKęsicka, Barbara, Michał Kozłowski, Rafał Stasik, and Iwona Pińskwar. 2023. "Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes" Applied Sciences 13, no. 16: 9077. https://doi.org/10.3390/app13169077
APA StyleKęsicka, B., Kozłowski, M., Stasik, R., & Pińskwar, I. (2023). Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes. Applied Sciences, 13(16), 9077. https://doi.org/10.3390/app13169077