Spatial Modeling through GIS Analysis of Flood Risk and Related Financial Vulnerability: Case Study: Turcu River, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology and Database
3. Results
3.1. The 1% Floodplain and Hazard Mapping
3.2. Evaluation of the Potential Financial Loss (Minimum Values) in Case of Flooding on the Turcu River for the Land and Related Real Estate Infrastructure, Mapped in the 1% Floodplain
3.3. Assessment of Potential Financial Loss Due to Flooding on the Turcu River for Road Segments Crossed by the 1% Floodplain and Water Depth > 0.5 m
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, C.; Laize, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pinskwar, I.; Brakenridge, G.R. Large floods in Europe, 1985–2009. Hydrol. Sci. J. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brazdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriauciuniene, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Alfieri, L.; Pappenberger, F.; Wetterhall, F.; Haiden, T.; Richardson, D.; Salamon, P. Evaluation of ensemble streamflow predictions in Europe. J. Hydrol. 2014, 517, 913–922. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef]
- Quirogaa, V.M.; Kurea, S.; Udoa, K.; Manoa, A. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua 2016, 3, 25–33. [Google Scholar] [CrossRef]
- Muszyński, R.; Kocur-Bera, K. Flood damage asses sment using river water levels-a case study of a town located in the North Mazovian Lowland (Poland). J. Ecol. Eng. 2021, 22, 200–212. [Google Scholar] [CrossRef]
- Castelli, F.; Galeotti, M.; Rabitti, G. Financial instruments for mitigation of flood risks: The case of Florence. Risk Anal. 2019, 39, 462–472. [Google Scholar] [CrossRef]
- Susnik, J.; Strehl, C.; Postmes, L.A.; Vamvakeridou-Lyroudia, L.S.; Malzer, H.J.; Savic, D.A.; Kapelan, Z. Assessing financial loss due to pluvial flooding and the efficacy of risk-reduction measures in the residential property sector. Water Resour. Manag. 2015, 29, 161–179. [Google Scholar] [CrossRef]
- European Environment Agency. Directive 2007/60/EC of the European Parliament and of the Council on the Assessment and Management of Flood Risks. Available online: https://www.eea.europa.eu/policy-documents/directive-2007-60-ec-of (accessed on 3 April 2022).
- Romanescu, G.; Stoleriu, C.C.; Mihu-Pintilie, A. Implementation of EU Water Framework Directive (2000/60/EC) in Romania-European Qualitative Requirements. In Water Resources Management in Romania; Negm, A., Romanescu, G., Zeleňáková, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 17–55. [Google Scholar]
- Chendeș, V.; Rădulescu, D.; Rândașu, S.; Ion, B.; Achim, D.; Preda, A. Guidance for Reporting under the Floods Directive. Hidrotechnica 2014, 59, 10–11. [Google Scholar]
- Spachinger, K.; Dorner, W.; Metzka, R.; Serrhini, K.; Fuchs, S. Flood Risk and Flood Hazard Maps-Visualization of Hydrological Risks. IOP Conf. Ser. Earth Environ. Sci. 2008, 4, 012043. [Google Scholar] [CrossRef]
- Bures, L.; Roub, R.; Sychova, P.; Gdulova, K.; Doubalova, J. Comparison of bathymetric data sources used in hydraulic modeling of flood. J. Flood Risk Manag. 2019, 12, e12495. [Google Scholar] [CrossRef]
- Hu, D.; Lu, C.; Yao, S.; Yuan, S.; Zhu, Y.; Duan, C.; Liu, Y. A prediction-correction solver for real-time simulation of free-surface flow in river networks. Water 2019, 11, 2525. [Google Scholar] [CrossRef]
- Sosa, J.; Sampson, C.; Smith, A.; Neal, J.; Bates, P. A toolbox to quickly prepare flood inundation models for LISFLOOD-FP simulations. Environ. Model. Softw. 2020, 123, 104561. [Google Scholar] [CrossRef]
- Dey, S.; Saksena, S.; Merwade, V. Assessing the effect of different bathymetric models on hydraulic simulation of rivers in data sparse regions. J. Hydrol. 2019, 575, 838–851. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Neal, J.C.; Sampson, C.C.; Smith, A.M.; Quinn, N.; Shustikova, I.; Domeneghetti, A.; Gilles, D.W.; Goska, R.; et al. A New Automated Method for Improved Flood Defense Representation in Large-Scale Hydraulic Models. Water Resour. Res. 2019, 55, 11007–11034. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological-Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef]
- Arseni, M.; Rosu, A.; Calmuc, M.; Calmuc, V.A.; Iticescu, C.; Georgescu, L.P. Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania. Sustainability 2020, 12, 6588. [Google Scholar] [CrossRef]
- Cole, S.J.; Moore, R.J.; Wells, S.C.; Mattingley, P.S. Real-time forecasts of flood hazard and impact: Some UK experiences. E3S Web Conf. 2016, 7, 18015. [Google Scholar] [CrossRef]
- Lo, S.W.; Wu, J.H.; Lin, F.P.; Hsu, C.H. Visual sensing for urban flood monitoring. Sensors 2015, 15, 20006–20029. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.T.; Gouldby, B.; Cole, S.J.; Moore, R.J.; Kendall, H. Real-time flood inundation forecasting and mapping for key railway infrastructure: A UK case study. E3S Web Conf. 2016, 7, 18020. [Google Scholar] [CrossRef]
- Arseni, M.; Roșu, A.; Bocăneală, C.; Constantin, D.-E.; Georgescu, P.L. Flood hazard monitoring using GIS and remote sensing observations. Carpathian J. Earth Environ. Sci. 2017, 12, 329–334. [Google Scholar]
- Domeneghetti, A.; Schumann, G.J.-P.; Tarpanelli, A. Preface: Remote Sensing for Flood Mapping and Monitoring of Flood Dynamics. Remote Sens. 2019, 11, 943. [Google Scholar] [CrossRef]
- Van Leeuwen, B.; Tobak, Z.; Kovács, F. Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management. Sustainability 2020, 12, 2854. [Google Scholar] [CrossRef]
- Popa, M.C.; Peptenatu, D.; Draghici, C.C.; Diaconu, D.C. Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzău River Catchment, Romania. Water 2019, 11, 2116. [Google Scholar] [CrossRef]
- Popa, M.C.; Simion, A.G.; Peptenatu, D.; Dima, C.; Draghici, C.C.; Florescu, M.S.; Dobrea, C.R.; Diaconu, D.C. Spatial assessment of flash-flood vulnerability in the Moldova river catchment (N Romania) using the FFPI. J. Flood Risk Manag. 2020, 13, e12624. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef]
- ESRI, Resources, How Topo to Raster Works. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/3d-analyst/how-topo-to-raster-works.htm (accessed on 10 April 2022).
- Huțanu, E.; Mihu-Pintilie, A.; Urzică, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water 2020, 12, 1624. [Google Scholar] [CrossRef]
- Kocsis, I.; Bilașco, Ș.; Irimuș, I.-A.; Dohotar, V.; Rusu, R.; Roșca, S. Flash Flood Vulnerability Mapping Based on FFPI Using GIS Spatial Analysis Case Study: Valea Rea Catchment Area, Romania. Sensors 2022, 22, 3573. [Google Scholar] [CrossRef] [PubMed]
- Bilasco, S.; Hognogi, G.G.; Roșca, S.; Pop, A.M.; Iuliu, V.; Fodorean, I.; Marian-Potra, A.C.; Sestras, P. Flash Flood Risk Assessment and Mitigation in Digital-Era Governance Using Unmanned Aerial Vehicle and GIS Spatial Analyses Case Study: Small River Basins. Remote Sens. 2022, 14, 2481. [Google Scholar] [CrossRef]
- US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center. HEC-RAS for Windows. Available online: https://www.hec.usace.army.mil/software/hec-ras/download.aspx (accessed on 16 April 2022).
- Patel, D.P.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [Google Scholar] [CrossRef]
- Huțanu, E.; Urzica, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. Comparative analysis of flooded areas using satellite images Landsat 7-ETM+ and hydraulic model HEC-RAS. Case study: The Jijia River, Slobozia-Dângeni section. In Proceedings of the 5th International Scientific Conference Geobalcanica, Sofia, Bulgaria, 13–14 June 2019; Volume 5, pp. 619–625. [Google Scholar]
- Song, Y.; Park, Y.; Lee, J.; Park, M.; Song, Y. Flood forecasting and warning system structures: Procedure and application to a small urban stream in South Korea. Water 2019, 11, 1571. [Google Scholar] [CrossRef]
- Enea, A.; Urzica, A.; Breabăn, I.G. Remote sensing, GIS and HEC-RAS techniques, applied for flood extent validation, based on Landsat imagery, LiDAR and hydrological data. Case study: Baseu River, Romania. J. Environ. Prot. Ecol. 2018, 19, 1091–1101. [Google Scholar]
- Reil, C.; Skoulikaris, T.A.; Roub, R. Evaluation of riverbed representation methods for one-dimensional flood hydraulics model. J. Flood Risk Manag. 2018, 11, 169–179. [Google Scholar] [CrossRef]
- Liu, Z.; Merwade, V.; Jafarzadegan, K. Investigating the role of model structure and surface roughness ingenerating flood inundation extents using one- and two-dimensional hydraulic models. J. Flood Risk Manag. 2019, 12, e12347. [Google Scholar] [CrossRef]
- Ghimire, E.; Sharma, S. Flood Damage Assessment in HAZUS Using Various Resolution of Data and One-Dimensional and Two-Dimensional HEC-RAS Depth Grids. Nat. Hazards Rev. 2021, 22, 04020054. [Google Scholar] [CrossRef]
- Pinos, J.; Timbe, L. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Sci. Eng. 2019, 12, 11–18. [Google Scholar] [CrossRef]
- Pasquier, U.; He, Y.; Hooton, S.; Goulden, M.; Hiscock, K.M. An integrated 1D-2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change. Nat. Hazards 2019, 98, 915–937. [Google Scholar] [CrossRef]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Nat. Hazards 2016, 83, 117–132. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Gago, C. Environmental analysis of flood risk in urban planning: A case study in Las Quemadillas, Cordoba, Spain. Environ. Eng. Manag. J. 2018, 17, 2527–2536. [Google Scholar] [CrossRef]
- US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center. HEC-RAS River Analysis System Hydraulic Reference Manual Version 5.0. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf (accessed on 27 July 2021).
- GD, no. 1309 of 27 October 2005 on the Approval of the Programme for the Implementation of the National Plan for the Prevention, Protection and Mitigation of Floods and Its Financing (Updated until 6 January 2015). Available online: http://legislatie.just.ro/Public/DetaliiDocument/65610 (accessed on 8 April 2022).
- Plan for the Prevention, Protection and Mitigation of Floods in the Olt River Basin. Available online: http://arhiva.rowater.ro/daolt/Proiecte/PPPDI%2001.06.2011.pdf (accessed on 2 April 2022).
- Rădulescu, D.; Chendeș, V.; Ion, M.B. Hazard and Risk Maps in Romania, according to the Requirements of Directive 2007/60/EC. J. Rom. Assoc. Hydrol. Sci. Viitura 2014. Available online: https://www.researchgate.net/publication/283085982 (accessed on 7 April 2022).
- Flood Risk Management Plan, National Synthesis. Available online: http://www.mmediu.ro/app/webroot/uploads/files/2016-04-26_PMRI_Sinteza_Nationala.pdf (accessed on 9 April 2022).
- National Administration “Romanian Waters”, Hazard and Flood Risk Maps. Available online: https://rowater.ro/despre-noi/descrierea-activitatii/managementul-situatiilor-de-urgenta/directiva-inundatii-2007-60-ce/harti-de%20hazard-si-risc-la-inundatii/ (accessed on 24 August 2021).
- Flood Risk Management Plan, Olt Water Basin Administration. Available online: https://rowater.ro/wp-content/uploads/2020/11/6-PMRI-Olt.pdf (accessed on 7 April 2022).
- Balasco, S.; Horváth, C. Digital Mapping of Floodplains Based on Statistics, Hydraulic Calculations and GIS Spatial Analysis; Casa Cărții de Știință: Cluj-Napoca, Romania, 2016; 168p. [Google Scholar]
- Haidu, I. Frequency analysis and quantitative risk assessment. In Risks and Disasters; Casa Cărții de Știință: Cluj-Napoca, Romania, 2002; pp. 180–207. [Google Scholar]
- Ntanganedzeni, B.; Nobert, J. Flood risk in Luvuvhu River, Limpopo Province, South Africa. Phys. Chem. Earth 2020, 124, 102959. [Google Scholar] [CrossRef]
- Defence Plan Brasov County, County Plans for the Olt River Basin. Available online: http://arhiva.rowater.ro/daolt/Planuri%20judetene%20aferente%20bazinului%20hidrografic%20Ol/Forms/AllItems.aspx (accessed on 7 April 2022).
- Ministry of National Defence, Military Topographic Directorate, Bucharest, Topographic Maps 1:25,000. Available online: https://portal.geomil.ro/portal/home/webmap/viewer.html?webmap=f4ff7adb4477470ea525061079ec972d (accessed on 7 April 2022).
- Manning, R. On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Irel. 1891, 20, 161–207. [Google Scholar]
- Google Earth Pro GIS Application. Available online: https://www.google.com/intl/ro/earth/versions/#earth-pro (accessed on 5 April 2022).
- Google Maps GIS Application. Available online: https://www.google.ro/maps/ (accessed on 8 April 2022).
- Chamber of Notaries Public Brasov, Market Study on Minimum Values of Real Estate Properties in Brasov and Covasna Counties. Available online: http://www.unnpr.ro/files/expertize2021/CNPBrasov/bv_si_cv_2021.pdf (accessed on 1 April 2022).
- Modernization Works of the Intercounty Road DJ 104A, DJ 105C, DJ 105P, County. Brașov, Romania. Available online: http://litera9.com/foto-podurile-de-pe-traseul-drumului-interjudetean-dj-104a-dj-105c-dj-105p-sunt-in-lucru-lucrarile-fac-parte-din-proiectul-de-modernizare-a-drumului-de-sub-munte/ (accessed on 22 May 2021).
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Mtamba, J.; van der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling. Remote Sens. 2015, 7, 836–864. [Google Scholar] [CrossRef]
- Bricker, J.D.; Gibson, S.; Takagi, H.; Imamura, F. On the need for larger Manning’s roughness coefficients in depth-integrated tsunami inundation models. Coast. Eng. J. 2015, 57, 1550005-1–1550005-13. [Google Scholar] [CrossRef]
- Romanian National Institute of Geology, Geological map of R. S. Romania, scale: 1:50,000, map sheet 110 d Moeciu L-35-87-D (1971), 110 b Zărnești L-35-87-B (1972), accessed from the Secret Documents Office of the Faculty of Geography of “Babes-Bolyai” Cluj-Napoca University.
- Water Law No 107 of 25 September 1996. Available online: https://legislatie.just.ro/Public/DetaliiDocument/8565 (accessed on 1 April 2022).
- Natural Disaster Insurance Pool, Romania, Natural Disaster Insurance Policy. Available online: https://www.paidromania.ro/ce-este-pad/ (accessed on 26 August 2021).
- Law No 260 of 4 November 2008 on Compulsory Insurance of Dwellings against Earthquakes, Landslides and Floods. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/126184 (accessed on 5 April 2022).
- National Institute of Statistics, Romania, Stable Population by Counties, Municipalities, Cities and Component Localities at RPL_2011. Available online: http://www.recensamantromania.ro/rezultate-2/ (accessed on 27 August 2021).
- Bilașco, Ș.; Roșca, S.; Vescan, I.; Fodorean, I.; Dohotar, V.; Sestras, P. A GIS-Based Spatial Analysis Model Approach for Identification of Optimal Hydrotechnical Solutions for Gully Erosion Stabilization. Case Study. Appl. Sci. 2021, 11, 4847. [Google Scholar] [CrossRef]
- Costea, A.; Bilasco, S.; Irimus, I.-A.; Rosca, S.; Vescan, I.; Fodorean, I.; Sestras, P. Evaluation of the Risk Induced by Soil Erosion on Land Use. Case Study: Guruslău Depression. Sustainability 2022, 14, 652. [Google Scholar] [CrossRef]
- Sestras, P.; Bilașco, Ș.; Roșca, S.; Veres, I.; Ilies, N.; Hysa, A.; Spalević, V.; Cîmpeanu, S.M. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sens. 2022, 14, 5822. [Google Scholar] [CrossRef]
Type of Bed | Description (Classification of Terns) | Minim | Normal (Used) | Maxim |
---|---|---|---|---|
Minor bed of a mountain river; bed: gravels, rounded stones and rare boulders | Crystalline rocks | 0.030 | 0.048 | 0.050 |
Conglomerates and limestones | 0.030 | 0.045 | 0.050 | |
Conglomerate | 0.030 | 0.042 | 0.050 | |
Sands and gravels | 0.030 | 0.040 | 0.050 | |
Greater albia | Meadow/grassland with short grass | 0.025 | 0.030 | 0.035 |
Meadow/high grass meadow | 0.030 | 0.033 | 0.050 | |
Arable, ploughed and unploughed areas | 0.020 | 0.030 | 0.040 | |
Mature agricultural crops sown in rows (maize) | 0.025 | 0.035 | 0.045 | |
Mature and scattered sown agricultural crops | 0.030 | 0.040 | 0.050 | |
Isolated bushes, big thick grass | 0.035 | 0.040 | 0.070 | |
Isolated bushes, rare trees | 0.040 | 0.050 | 0.080 | |
Thick bushes | 0.045 | 0.060 | 0.110 | |
Open land with felled trees and grass | 0.050 | 0.060 | 0.080 | |
Forest with straight trees, some fallen | 0.080 | 0.100 | 0.120 |
Depth of Floodplain < 0.5 m Medium Risk | Depth of Floodplain > 0.5 m Sea Risk | Assignment of the Minimum Value for Infrastructure Categories | |||||
---|---|---|---|---|---|---|---|
No. crt. | Surface of the Flooding Strip. (ha) | Land Area Built (ha) | Surface of the Flooding Strip. (ha) | Built-up Land Area (ha) | * Minimum Value of the Courtyard Land Construction (lei/m2) Tcc = Sc | * Val. Minimum of Residential Buildings (lei/m2 of Su) Su = Scl/1.40 | * Val. Minimum of Household Annexes. (lei/m2 of Sc) |
1. | Intra-village TOHANU NOU (town ZĂRNEȘTI) | C1 1 1910 | A1 1 500 | ||||
3.972898 | 0.419944 | 7.361291 | 0.649972 | 62 | C2 2 1390 | A2 2 350 | |
2. | Intra-village BRAN (commune BRAN) | C1 1 1780 | A1 1 360 | ||||
5.220445 | 0.579969 | 15.058957 | 1.075532 | 47 | C2 2 790 | A2 2 208 | |
3. | Intra-village MOIECIU de JOS (commune MOIECIU) | C1 1 1780 | A1 1 360 | ||||
10.645934 | 0.654739 | 24.681459 | 1.181207 | 47 | C2 2 790 | A2 2 208 | |
4. | Intra-village CHEIA trup 1 (commune MOIECIU) | C1 1 1090 | A1 1 280 | ||||
4.087596 | 0.233763 | 9.63013 | 0.623916 | 39 | C2 2 720 | A2 2 128 | |
5. | Intra-village CHEIA trup 3 (commune MOIECIU) | C1 1 1090 | A1 1 280 | ||||
1.047413 | 0.076728 | 5.280879 | 0.437732 | 39 | C2 2 720 | A2 2 128 | |
6. | Intra-village MOIECIU de SUS (commune MOIECIU) | C1 1 1090 | A1 1 280 | ||||
8.35525 | 0.785387 | 16.771403 | 0.989368 | 39 | C2 2 720 | A2 2 128 | |
Total intra-village | 33.329536 ha | 2.75053 ha | 78.784119 ha | 4.957727 ha | - | ||
7. | Agricultural land (pasture, meadow, arable and fruit trees/shrub plantation), small areas with forest, meadow areas, water intake of MHC Bran 1, ** residential buildings (10), ** commercial premises (2) and outbuildings (13)—in total, 25 buildings in the Tohanu Nou and Bran villages. | ||||||
Total extra-village | 10.663825 ha | RISC Low 0.975.849 ha | 24.858542 ha | RISC Low 0.454075 ha | ** The construction of housing and economic infrastructure on land in the countryside is illegal. For the extra-village area of Tohanu Nou and Bran we can admit that the buildings have a building permit attesting their allocation to the adjacent intra-village area, for the purpose of calculating the potential financial loss (minimum values) in case of flooding. |
Depth of Floodplain < 0.5 m Medium Risk | Depth of Floodplain > 0.5 m Sea Risk | Minimum Average Value for Residential Buildings and Household Annexes | Loss Financial Potential (PFcl and PFag) (RON) | ||||
---|---|---|---|---|---|---|---|
No. crt. | Area of Land Built with Residential Buildings (m2 of Su), Su = Scl/1.40 | Built-Up Land Area with Household Annexes (m2 of Sc) | Area of Land Built with Residential Buildings (m2 of Su), Su = Scl/1.40 | Built-Up Land Area with Household Annexes (m2 of Sc) | Average Minimum Value of Residential Buildings (lei/m2 of Su) (C1 1 + C2 2)/2, Su = Scl/1.40 | Minimum Value Average of Household Annexes (lei/m2 of Sc)(A1 1 + A2 2)/2 | Min. Loss Value Potential Finances(a and c Residential Buildings, b and d Household Annexes) |
1. | Intra-village Tohanu Nou (Town ZĂRNEȘTI) | 1650 | 425 | a 13,002,410.53 b 106,251.22 | |||
4199.44 | - | 6281.545 | 218.175 | ||||
2. | Intra-village BRAN (commune BRAN) | 1285 | 284 | a 1,027,8681.03 b 380,650 | |||
3332.64 | 460 | 7320.42 | 690 | ||||
3. | Intra-village MOIECIU de JOS (com. MOIECIU) | 1285 | 284 | a 16,990,613.26 b 248,250 | |||
6247.39 | 300 | 11,362.07 | 450 | ||||
4. | Intra-village CHEIA (commune MOIECIU) | 905 | 204 | a 8,771,545.95 b 157,950 | |||
2844.91 | 260 | 9952.26 | 390 | ||||
5. | Intra-village MOIECIU de SUS (com. MOIECIU) | 905 | 204 | a 7,603,253.51 b 303,750 | |||
4915.32 | 500 | 6177.38 | 750 | ||||
Total Intra-village | 21,539.7 m2 | 1520 m2 | 41,093.675 m2 | 2498.175 m2 | - | TOTAL a 56,646,504.28 TOTAL b 1,196,851.22 | |
6. | MIC RISK—MHC Bran 1 water outlet, ** residential buildings (10) and household annexes (13) located in the outlying areas of Tohanu Nou and Bran villages | TOTAL (a + b) 57,843,355.5 | |||||
Extra-villageTohanu Nou | 283.16 | 248.28 | 1833.86 | 517.51 | 1650 | 425 | c 2,626,314.52 d 372,939.73 |
Extra-village. Bran | 742.55 | 32.44 | 748.2 | 870.17 | 1285 | 284 | c 1,438,360.78 d 298,763.91 |
Total extra-village(residential buildings + household annexes) | 1025.71 m2 | 280.72 m2 | 2582.06 m2 | 1387.68 m2 | ** We accept the minimum land values for the construction yards: Tohanu Nou, 62 lei/m2 and Bran, 47 lei/m2, for the purpose of calculating the potential financial loss (minimum values) in case of flooding. | TOTAL (c + d) 4,736,378.94 |
Crt. No. | Commercial (com.), Industrial (ind.), Social-Cultural (s.c.) and Non-Economic (a.d.) Premises Located within or outside Urban Areas | Area of the Building Located in the Flood Plain 1% (m2 of Sce) | * Minimum Value of land Yards Buildings (lei/m2) Tcc = Sce | * Minimum Value of Infrastructure (Vmi) Built as Commercial, Industrial, Commercial and a.d. Premises. (lei/m2 of Su) | Loss Financial Potential (PFec, min. Value) (RON and EURO) |
---|---|---|---|---|---|
1. | “Royalis” textile laundry (com.—intrav. Bran) | 244.41 | 47 | 1160 | 213,998.41 R |
2. | Restaurant “Taverna Lupilor” (com.—** extrav. Bran) | 571.01 | 47 | 1160 | 499,960.04 R |
3. | Restaurant “La Lupi” (com.—** extrav. Bran) | 111.67 | 47 | 1160 | 97,775.06 R |
4. | Bottling mineral water “Izvorul Moieciu” (ind.—intrav. Full) | 274.22 | 39 | 450 | 98,836.72 R |
5. | New Orthodox Church (s.c.—intrav. Bran) | 349.98 | 47 | 580 | 161,490.77 R |
6. | Chapel “Heart of Queen Mary” (s.c.—intrav. Bran) | 32.47 | 47 | 580 | 14,977.94 R |
7. | “Sextil Puscariu” High School (s.c.—intrav. Bran) | 560.38 | 47 | 580 | 258,495.28 R |
8. | Cultural Centre (s.c.—intrav. Moieciu de Sus) | 521.4 | 39 | 580 | 236,343.17 R |
9. | Gymn. Moieciu de Sus (s.c.—intrav. Moieciu de Sus) | 190.85 | 39 | 580 | 86,509.57 R |
10. | SRI Headquarters (a.d.—intrav. Bran) | 256.37 | 47 | 580 | 118,259.81 R |
11. | Bran Police Station (a.d.—intrav. Bran) | 295.55 | 47 | 580 | 136,332.99 R |
12. | Aurel Stoian” public parking lot (a.d.—intrav. Bran) | 3012.79 | 47 | 580 (lei/m2 of Sc) | 1,889,019.33 R |
13. | MHC Bran 1 water intake (a.d.—extrav. Bran) | 8340.39 | extravital pasture: 1.11 | 580 (lei/m2 of Sc) | 4,846,684.03 R |
Total | 14,761.49 | - | - | 8,658,683.12 R = 1,765,924.93 E |
Potential Financial Loss from Flooding on the Turcu River for Road Segments Intersected by 1% Floodplain and Water Depth > 0.5 m | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
Type and the Callsign | Width Platform = pc + a (m) | Length of Road Potentially Affected (km) | Road Surface Potentially Affected (m2) (2 × 3) | Cost of Rehabilitation Works (lei/km) | Loss Financial Potential (RON and EURO) (3 × 5) |
NED 73 | 8.3 + 2.2 = 10.5 | 0.42571 | 4469.955 | 2,722,974.1 + 40% ** | 1,622,876.22 R |
DN 73F 2 | 7 + 2 = 9 | 3.44538 | 31,008.42 | 2,722,974.1 + 20% ** | 11,258,016.6 R |
DN 73F 1 | 6.5 + 2 = 8.5 | 0.27437 | 2332.145 | 2,722,974.1 + 10% * | 821,812.64 R |
DJ 112H | 6 + 2 = 8 | 0.23005 | 1840.4 | 2,722,974.1 * | 626,420.19 R |
DC 53 | 4.35 + 2.15 = 6.5 | 1.23543 | 8030.295 | 2,722,974.1–30% ** | 2,354,830.72 R |
Total | 5.61094 | 47,681.215 | - | 16,683,956.37 R = 3,402,666.90 E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trif, S.; Bilașco, Ș.; Petrea, D.; Roșca, S.; Fodorean, I.; Vescan, I. Spatial Modeling through GIS Analysis of Flood Risk and Related Financial Vulnerability: Case Study: Turcu River, Romania. Appl. Sci. 2023, 13, 9869. https://doi.org/10.3390/app13179869
Trif S, Bilașco Ș, Petrea D, Roșca S, Fodorean I, Vescan I. Spatial Modeling through GIS Analysis of Flood Risk and Related Financial Vulnerability: Case Study: Turcu River, Romania. Applied Sciences. 2023; 13(17):9869. https://doi.org/10.3390/app13179869
Chicago/Turabian StyleTrif, Septimius, Ștefan Bilașco, Dănuț Petrea, Sanda Roșca, Ioan Fodorean, and Iuliu Vescan. 2023. "Spatial Modeling through GIS Analysis of Flood Risk and Related Financial Vulnerability: Case Study: Turcu River, Romania" Applied Sciences 13, no. 17: 9869. https://doi.org/10.3390/app13179869
APA StyleTrif, S., Bilașco, Ș., Petrea, D., Roșca, S., Fodorean, I., & Vescan, I. (2023). Spatial Modeling through GIS Analysis of Flood Risk and Related Financial Vulnerability: Case Study: Turcu River, Romania. Applied Sciences, 13(17), 9869. https://doi.org/10.3390/app13179869